1.2 Polynomial Functions - Operations with Polynomials

Essential Question:

A term is an algebraic expression that can be written using constants, variables, multiplication and division. The constants are called \qquad . A polynomial can be written using terms and addition and subtraction. The term of the polynomial which does not include a variable is called the
\qquad . Any letter may be used as the variable in a polynomial.
Note the characteristics of a polynomial.

Any letter may be used as the variable in a polynomial. Examples of polynomials include the following.

POLYNOMIALS	NOT POLYNOMIALS

Degree of a Polynomial - The exponent of the highest power of x is the degree of the polynomial, and the coefficient of this highest power of the variable is the leading coefficient.

Polynomial	Degree	Leading Coefficient	Constant Term
$6 x^{7}+4 x^{3}+5 x^{2}-7 x+10$			
x^{3}			
12			
$2 x^{6}+3 x^{7}-x^{8}-2 x-4$			

Polynomial functions of degree less that 5 are often referred to by special names.

- First-degree polynomial functions are called \qquad functions.
- Second-degree polynomial functions are called \qquad functions.
- Third- degree polynomial functions are called \qquad functions.
- Fourth- degree polynomial functions are called \qquad functions.
ex. $\left(-2 x^{3}+x^{2}-4 x+1\right)-\left(2 x^{3}-x+4\right)$

Multiplying Polynomials To multiply polynomials,
ex. $(2 x-3)\left(x^{2}+3 x-5\right)$

Dividing Polynomials

Ex. $\left(3 x^{4}-8 x^{2}-11 x+1\right) \div(x-2)$
Synthetic Division
Long Division

