Solve each of the given triangles.

$$p = 15$$
, $q = 19$, $r = 43$

No solution ©

$$\begin{array}{c} 27^{\circ} \\ 27^{\circ} \\ 31.4$$

I. Would you rather be drowned or burned alive?

2. Would you rather be president of the US or king/queen of England?

6.1 Homework Key

11.
$$\angle Q = 63^{\circ}$$

 $\angle P = 87^{\circ}$
 $r=9$

12.
$$\angle Q = 54^{\circ}$$

 $\angle R = 43^{\circ}$
p=62.6

13.
$$\angle R = 42^{\circ}$$

 $\angle P = 25^{\circ}$
q=59

14. Does Not Exist

15.
$$\angle R = 31^{\circ}$$

 $\angle P = 96^{\circ}$
 $\angle Q = 53^{\circ}$

16.
$$\angle Q = 116^{\circ}$$

 $\angle P = 26^{\circ}$
 $\angle R = 38^{\circ}$

QUESTIONS, COMMENTS, CONCERNS?

Solve for the length of the missing side of each triangle. Round your answer to the nearest tenth.

1.
$$m\angle C = 115^{\circ}$$
, $a = 11$, $b = 21$

2.
$$m\angle C = 113^{\circ}$$
, $a = 13$, $b = 23$

3.
$$m\angle A = 32^{\circ}$$
, $b = 23$, $c = 47$

4. m
$$\angle A = 34^{\circ}$$
, b = 24, c = 46

Solve each triangle for the specified angle measure. Round your answer to the nearest degree.

5.
$$a = 11$$
, $b = 14$, $c = 17$; $m \angle A$

6.
$$a = 12$$
, $b = 16$, $c = 19$; $m\angle A$

7.
$$a = 23$$
, $b = 43$, $c = 31$; $m\angle B$

8.
$$a = 21$$
, $b = 42$, $c = 31$; $m\angle B$

9.
$$a = 12, b = 12, c = 17; m\angle C$$

10.
$$a = 17, b = 17, c = 24; m\angle C$$

Solve each Δ PQR. Round lengths to the nearest tenth, and angles to the nearest degree.

11.
$$m\angle R = 30^{\circ}$$
, $p = 18$, $q = 16$

12.
$$m\angle P = 83^{\circ}$$
, $r = 43$, $q = 51$

13.
$$m\angle Q = 113^{\circ}, p = 27, r = 43$$

14.
$$p = 15$$
, $q = 19$, $r = 43$

15.
$$p = 310$$
, $q = 250$, $r = 160$

16.
$$p = 200$$
, $q = 410$, $r = 280$

Solve the following word problems.

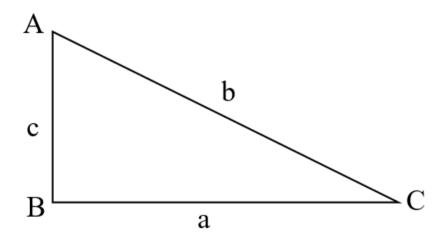
17. A triangular field is 452 ft on one side, and 572 ft on another. The sides meet in an angle of 67.1° . Find the length of the third side to the nearest foot.

18. If a triangular parcel of land has sides of lengths 541 ft, 429 ft, and 395 ft, what are the measures of the angles between the sides, to the nearest tenth of a degree?

6.2 LOW of Sines

FO: How do I use the law of sines to solve oblique triangles?

In ABC Upper Case - angle wherease - side

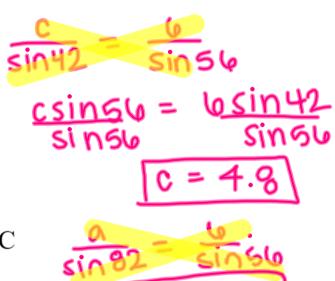

$$\frac{\sin A}{A} = \frac{\sin B}{b} = \frac{\sin C}{C}$$

OR

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

ASA AAS SSA

osines SAS SSS



6.2 LOW OF SINES

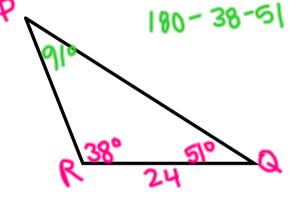
FO: How do I use the law of sines to solve oblique triangles?

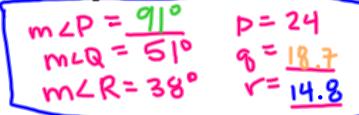
Example 1 - Find a and c.

$$A = 180-50-47$$
 $A = 6$
 A

6.2 LOW OF SINES

FO: How do I use the law of sines to solve oblique triangles?


Example 2 - Given: In $\triangle ABC$, a = 6, $m \angle B = 60^{\circ}$, $m \angle C = 42^{\circ}$. Find b.


6.2 LOW of Sines

FO: How do I use the law of sines to solve oblique triangles?

Solve each triangle PQR. Give angles to the nearest degree and sides to the nearest tenth.

3.
$$p = 24$$
, $m\angle Q = 51^{\circ}$, $m\angle R = 38^{\circ}$

	4.842/04084
24*sin(51	
	18.65150307
Ans/sin(91	
	40 (5404400

	18.65434422
24sin(38	
	14.77587541
Ans/sin(91	
	14.77812619

6.2 Law of Sines

Name

Solve each triangle for the indicated side to the nearest tenth.

- 1. $m\angle A = 39^{\circ}$, $m\angle B = 42^{\circ}$, c = 47; find a
- 2. $m\angle A = 41^{\circ}$, $m\angle B = 57^{\circ}$, c = 52; find b

- 3. $m\angle B = 72^{\circ}$, $m\angle C = 31^{\circ}$, a = 103; find b
- 4. $m\angle B = 34^{\circ}$, $m\angle C = 71^{\circ}$, a = 115; find b

- 5. $m\angle A = 48^{\circ}$, $m\angle B = 38^{\circ}$, b = 49; find c
- 6. $m\angle A = 35^{\circ}$, $m\angle B = 56^{\circ}$, a = 51; find c

Solve each triangle PQR. Give angles to the nearest degree and sides to the nearest tenth.

8.
$$p = 24$$
, $m\angle Q = 51^{\circ}$, $m\angle R = 38^{\circ}$

9.
$$q = 48$$
, $m \angle P = 63^{\circ}$, $m \angle R = 51^{\circ}$

10.
$$q = 75$$
, $m\angle P = 42^{\circ}$, $m\angle R = 20^{\circ}$

Solve the following word problem. Give sides to the nearest tenth.

11. From two points P and Q that are 140 ft apart, the lines of sight to a flagpole across a river make angles of 79° and 58° respectively, with the line joining P and Q. What are the distances from P and Q to the flagpole?

6.2 LOW OF SINCS

FO: How do I use the law of sines to solve oblique triangles?

CLOSING

Solve each triangle PQR. Give angles to the nearest degree and sides to the nearest tenth.

10.
$$q = 75$$
, $m\angle P = 42^{\circ}$, $m\angle R = 20^{\circ}$