transformations: Chensing b	
agenda Warm-Up HW Check Notes p. 44 HW: Practice \#1-4 Peminders HW 2.4 due Friday TEST \& Notebook Check Tuesday essential question What happens to the line when I change the "b" value of an equation?	Wapn-Up Wednesday There is an iPad at each table. The app you need is already open!! Work through the half-sheet of paper \#l-9! test Coprections 1. Watch videos (will be showing at 4:20 in C204) 2. Come to tutoring 3. Work other problems 4. SHOW YOUR WORK!!! 5. Raises your average!!

Slope-Intercept Form of Equations

Desmos link: goo.gl/kTQu2i
Slope is the \qquad and $H C$ PNe of \& line.
The y-intercept is where a line crosses the
\square Exploring slope

- Look at the graph on the iPad.

1. What is the value of the slope?

1
2. What does this tell you about the direction and steepness of the line?

UP
$<$ Drag the slider for m to the right.
3. How does increasing the slope change the line?
steerer
Drag the slider for m to the left until $m=0$.
4. How does decreasing the slope change the line?
fhe line look like when $m=0$?
5. What does the line look like when $m=0$?
Continue dragging the slider for m to the left.

Continue dragging How is the direction of the line different when m is negative than when it was positive?
7. How is the line changing as the slope decreases?
\square Exploring the \boldsymbol{y}-intercept
B Drag the slider for b to the right.
8. How does increasing b change the line?

Drag the slider for b to the left.
9. How does decreasing b change the line?
moNes d0N

1. Describe the change of the graph of $y=x$ if the
equation changes to $y=\frac{3}{5} x$
a. The new line is steeper.

The new line is less steep
c. The new line shifts up $\frac{3}{5}$ units
d. The new shifts down $\frac{3}{5}$ units.
2. Describe the change of the graph of $f(x)=x$ if the equation changes to $g(x)=4 x$
a. The line $\mathrm{g}(\mathrm{x})$ is the same.

The new line is decreasing and four times as steep
The new line is increasing and four times as steep.
d. The new line is horizontal.
3. Without using a calculator, describe the change of the graph of $y=x$ if the equation changes to $y=-\frac{1}{3} x$.
a. The graph is increasing but is flatter

The graph is increasing and steeper
d. The graph is deccreasing and steeper.
4. What would be the equation of the line $g(x)$ if the line $f(x)=x+4$ becomes flatter by a scale factor of $\frac{1}{2}$?
a. $g(x)=x-\frac{1}{2}$
b. $g(x)=-\frac{1}{2} x+4$
c. $g(x)=x+\frac{1}{2}$
d. $g(x)=\frac{1}{2} x+4$
5. What would be the equation of the line $g(x)$ if the line $f(x)=x$ becomes three times steeper and is
reflected?
a. $g(x)=x+3$
b. $g(x)=x-3$
. $g(x)=-3 x$
d. $g(x)=3 x$
6. Choose all of the following options that describe the change(s) of the graph of $f(x)=2 x$ if the equation
changes to $g(x)=-4 x$
a. The line $g(x)$ is less stee

The line $g(x)$ is reflected
The line $g(x)$ is shifted down

Given the two linear equations, decide if each statement is TRUE or FALSE.
$f(x)=\frac{1}{5} x+3$
$g(x)=-5 x+3$
___ $f(x)$ and $g(x)$ are parallel.$f(x)$ and $g(x)$ are perpendicular. ___ $g(x)$ is steeper than $f(x)$.$f(x)$ is decreasing. $\ldots \quad g(x)$ is decreasing.
8. The graph below represents the parent function $y=x$.

A) From the equation above, if the slope is changed to -2, what is the equation of the new line?
B) Graph the new line on the graph above.
C) Describe the transformation from the original line to the new line

transformations: Changing b podt essential question
 What happens to the line when I change the "b" value of an equation?

Sketch a graph of the following equations on the same coordinate plane, using a
for each line

transformations: Changing b podt essential question
 What happens to the line when I change the "b" value of an equation?

Use this equation for problems 4-7: $f(x)=x-2$
4. How does this compare to the linear parent function $(f(x)=x)$? \qquad
5. How would the graph change if the -2 in the equation was changed to a 2 ? \qquad
6. What if the -2 was changed to a -6 ? \qquad
7. What is the relationship between these two lines? \qquad

Algebra 1 Unit 3 Transformations Day 1 (Changes in b) Practice Transformations Day 1 (Changes in b)

Name
Date \qquad

1. For each set of functions below, graph each function in a different color and answer the questions that follow.

$$
f(x)=x
$$

a. $f(x)=x+4$
$f(x)=x-2$

- What is changing in each equation?
- How do the lines compare to each other?

b. $y=-2 x+2$
b. $y=-2 x-5$
$y=-2 x$
- What is changing in each equation?
- How do the lines compare to each other?

2. Which are not an effect on the graph of the parent function $f(x)=x$ for $g(x)=f(x)+2$?
I. The graph shifts 2 units down.
II. The x-intercept moves to (2,0).
III. The y-intercept moves to (0 ,

A I only
B I, II, III
C III and IV
D I and II

Algebra 1 Unit 3 Transformations Day 1 (Changes in b)

3. Luke opens a savings account and decides to put in $\$ 45$. He wants to add $\$ 15$ to the account each week.
a) Write an equation that represents y, the amount of money in Luke's savings, as a function of x, the numbers of weeks since he opened the account.
b) What would the equation be if Luke had put in $\$ 60$ when he opened his account?
c) Graph both equations and describe the transformation from part a) to part b).

4. For the function $f(x)=x+2$,

- How does $f(x)=x+2$ compare to the linear parent function $f(x)=x$.
- How would the graph change if the +2 in the equation was changed to $a+6$?
- What if the +2 was changed to a -2 ?
. What is the relationship between these two lines?

hw help transformations: Changing b

I. Make sure you use color or make your lines look different!
a. \cdot-intercept (b)

- They are parallel
b. You try it!!

2. Most important: NOT!! Will a plus move the graph UP or DOWN? Did the x-intercept or y-intercept change?
3. a) $y=45+15 x$
b) $y=60+15 x$
c) Graph the equations from a \& b. What changes on your graph?
4. Plug the new numbers in the equation and compare in your calculator!
