

1. Given the graph, write the equation of the parabola and find all the critical values.


```
Vertex: (-3,0)
Focus: (-3,3)
```

Directrix:
$$y = -3$$
Axis of symmetry: $x = -3$

Equation:
$$(X+3)^2 = 12(Y)$$

2. Given the graph, write the equation of the parabola and find all the critical values.

Vertex: (-3, -2)

Directrix: X = -7

Axis of Symmetry: Y = -2Equation: $(Y+2)^2 = 16(X+3)$ Domain: $(-3, \infty)$

Range: $(-\infty, \infty)$

Find the critical values for each parabola and then graph.

3.
$$(y-1)^2 = 4(x+3)$$

Value of c: __

Focus: (-2,1)

Directrix: X=-4

Axis of Symmetry: $\sqrt{=-3}$ Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

PAP PreCal - Unit 10: Conics

4.
$$(x-3)^2 = 4(y+6)$$
 WP

Vertex: (3,-6)

Value of c:

Focus: (3,-5)

Directrix: y = -7Axis of Symmetry: x = 3

Domain: $(-\infty, \infty)$

Range: [-(, \infty)]

Vertex: (0,0)

Focus: ___(0,2)

Directrix: Y = -2Axis of Symmetry: X = 0

Domain: (-00,00)

Range: [0,00)

6.
$$\frac{1}{8}(y+3)^2-5=x$$

Value of c: 2

Focus: _ (-31-3)

Axis of Symmetry: Y=-3

Domain: [-5,00)

Range: (-10, 10)

PAP PreCal - Unit 10: Conics

7. The graph of $x = y^2$ is stretched by a scale factor of 4, translated right 6 units and down 3 units. Write the equation to represent the image of the graph after the translation in standard form.

$$4(x-6)=(4-3)^2$$

8. Given the equation $(x-3)^2 = \frac{1}{9}(y-2)$, write the equation if it is reflected over the x-axis and translated up 3 units and translated left 2 units.

$$(x-1)^2 = -\frac{1}{8}(4-5)$$

9. Determine the following conic section line(s) of symmetry. $(x-4)=(y+5)^2$

A
$$x = 4$$
 only
B $y = -5$ only
C $x = 4$, $y = -5$

D Infinite lines of symmetry

10. Parabolas have which of the following characteristics?

Exactly 1 line of symmetry

Exactly 2 lines of symmetry

Created by the intersection of a cone and plane parallel to its base.

Created by the intersection of a cone and a plane perpendicular to its base.

A I and III B II and III I and IV