Name: \qquad

I ntermediate Value Theorem

If f is continuous on $[a, b]$, and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=k$

1. Use the Intermediate Value Theorem to show that $f(x)=x^{3}+2 x-1$ has a zero on $[0,1]$.
2. Verify that the IVT applies to the interval and find the value of c guaranteed by the theorem.

$$
f(x)=\frac{x^{2}+x}{x-1} \quad\left[\frac{5}{2}, 4\right] \quad f(c)=6
$$

3. Use the IVT to show that there exists a solution to $\cos (x)=x$ on the interval $\left[0, \frac{\pi}{2}\right]$
4. Use the IVT to show that the equation $x^{4}=2^{x}$ has at least one solution (you need to choose an a and b value on your own)
5. By applying the Intermediate Value Theorem choose the interval over which $x^{5}=2 x^{4}+11$ will have a solution.
a) $[-2,-1]$
b) $[-1,0]$
c) $[0,1]$
d) $[1,2]$
e) $[2,3]$
6. Let f be a continuous function on $[2,4]$ and have the values shown.

The equation $f(x)=k$ must have at least 2 solutions on $[2,4]$ for which value(s) of k ?
a) $k>9$
b) 7

x	2	3	4
$f(x)$	5	0	9

c) $0<k<5$
d) $k>5$
e) $5<k<9$
8. Consider $f(x)= \begin{cases}x^{2}-5 & \text { for } x<0, \\ 3 & \text { for } x=0, \\ x^{2}+5 & \text { for } x>0\end{cases}$
a) $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad
9. Consider $f(x)= \begin{cases}x+c & \text { for } x<-2, \\ c x^{2}+7 & \text { for } x \geq-2\end{cases}$

For what value of the constant c is f continuous for all real numbers?
d) 5
e) 6

The equation $f(x)=3$
2 solutions on $[2,4]$ for
$\begin{array}{lll}\text { a) } 3 & \text { b) } 4 & \text { c) } 2\end{array}$
The equation $f(x)=$
2 solutions on $[2,4]$ for
$\begin{array}{lll}\text { a) } 3 & \text { b) } 4 & \text { c) } 2\end{array}$
The equation $f(x)=$
2 solutions on $[2,4]$ for
$\begin{array}{lll}\text { a) } 3 & \text { b) } 4 & \text { c) } 2\end{array}$
f is continuous on $[2,4]$ and has the values shown.

The equation $f(x)=3$ must have at least 2 solutions on $[2,4]$ for $k=$ \qquad -

x	2	3	4
$f(x)$	5	k	9

b) $\lim _{x \rightarrow 0^{-}} f(x)=$ \qquad
c) $\lim _{x \rightarrow 3} f(x)=$ \qquad
d) Where is $f(x)$ discontinuous?
e) If a function is continuous at $x=a$, does this necessarily mean that $\lim _{x \rightarrow a}$ exists?

