Date _____

This figure shows the graph of f. Use this figure to answer the following question(s).

1. At which of the following x-values is f continuous? Choose the BEST answer.

I.
$$-6$$

At which of the following x-values does f have a removeable discontinuity? Choose the BEST answer.

At which of the following x-values does f have a jump discontinuity? Choose the BEST answer.

I.
$$-6$$

4.	Given a function defined by $f(x) = \frac{3x-12}{x^2-6x+8}$, for what value(s) of x is the function discontinuous?				
	a) 4 only	b) 2	c) 2, 4	d) -4 only	e) $-4, -2$
5.	Which of the following functions are continuous for all real numbers x ?				
	I. $y = \frac{1}{x}$				
	II. $y = 2^x$				
	III. $y = \sec x$	c			
	a) I and III only	b) II only	c) II and III only	d) I and II only	e) I only
6.	Given a function is defined by $f(x) = \frac{2x+2}{x^2+5x+4}$, for what value(s) of x does the function have one or more vertical asymptotes?				
	a) 1 only	b) -4 only	c) -4 and -1	d) 4 only	e) 1 and 4
7.	For what value(s) of x does the function defined by $f(x) = \frac{x^2 - 6x + 8}{x^2 - 2x - 8}$ have a removeable discontinuity?				
	a) 4 only	b) 2 only	c) -4 only	d) 4 and -2	e) -4 and 2
8.	Let f be defined as	follows:			
	$f(x) = \begin{cases} \frac{x^2 - x^2}{x - x^2} \end{cases}$	$\frac{9}{3} \text{for } x \neq 3,$ $\text{for } x = 3$			
	Which of the following are true about f ?				
	I. $\lim_{x \to 3} f(x)$	exists			
	II. $f(3)$ exists				
	III. $f(x)$ is	continuous at $x = 3$			
	a) None	b) I only	c) II only	d) I and II only	e) I, II, and III
9.	Let f be defined as follows:				
	$f(x) = \begin{cases} \frac{x^2 - 1}{x - 16} & \text{if } x = 1 \end{cases}$	$\frac{64}{8} \text{for } x \neq 8,$ $\text{for } x = 8$			
	Which of the following are true about f ?				
	I. $\lim_{x \to 8} f(x)$	exists			
	II. $f(8)$ exi	sts			
	III. $f(x)$ is	continuous at $x = 8$			
	a) None	b) I only	c) II only	d) I and II only	e) I, II, and III

10. Let f be defined as follows:

$$f(x) = \begin{cases} \frac{x^2 - k^2}{x - k} & \text{for } x \neq k, \\ 1 & \text{for } x = k \end{cases}$$

Which of the following are true about f?

- I. $\lim_{x \to k} f(x)$ exists
- II. f(k) exists
- III. f(x) is continuous at x = k
- a) None
- b) I only
- c) II only
- d) I and II only
- e) I, II, and III

11. Let f be defined as follows:

$$f(x) = \begin{cases} \frac{x^2 - k^2}{x - k} & \text{for } x \neq k, \\ 2k & \text{for } x = k \end{cases}$$

Which of the following are true about f?

- I. $\lim_{x \to k} f(x)$ exists
- II. f(k) exists
- III. f(x) is continuous at x = k
- a) None
- b) I only
- c) II only
- d) I and II only
- e) I, II, and III

12. Consider the function

$$f(x) = \begin{cases} x^2 & \text{for } -2 < x < 2, \\ 4 & \text{for } x \ge 2, \\ 5 & \text{for } x \le -2 \end{cases}$$

At x = -2 the function has

a) a jump discontinuity

b) an infinite discontinuity

c) a removable discontinuity

- d) a point at which the function is continuous
- e) a point at which the function is differentiable

13. Consider the function

$$f(x) = \begin{cases} x^2 + 5 & \text{for } x > 5, \\ 3ax & \text{for } x \le 5 \end{cases}$$

For what value of a is the function continuous?

- a) 2
- b) 10
- c) {

- d) 15
- e) 30

14. Consider $f(x) = \begin{cases} x+c & \text{for } x < 3, \\ cx^2 + 5 & \text{for } x \ge 3 \end{cases}$

For what value of the constant c is f continuous for all real numbers?

Acces format version 3.60B

© 1997–2003 EducAide Software Licensed for use by Richardson High School

BC Calculus

Continuity

4/11/2012

Answer List

-4	
1	_
1.	- 0

4. c

7. a

10. d

13. a

2. e

5. b

8. d

11, е

14. $-\frac{1}{4}$

3. b

6. b

9. e

12. a

Catalog List

1. APC CA 17

4. APC CF 1

7. APC CF 15

10. APC CF 25

13. APC CF 31

2. APC CA 19

5. APC CF 5

8. APC CF 17

11. APC CF 27

14. APC CF 45

3. APC CA 20

6. APC CF 13

9. APC CF 21

12. APC CF 29