Intermediate Value Theorem

If f is continuous on [a,b], and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c)=k

1. Use the Intermediate Value Theorem to show that $f(x) = x^3 + 2x - 1$ has a zero on [0,1].

2. Verify that the IVT applies to the interval and find the value of c guaranteed by the theorem.

$$f(x) = \frac{x^2 + x}{x - 1} \qquad \left[\frac{5}{2}, 4\right] \qquad f(c) = 6$$

3. Use the IVT to show that there exists a solution to cos(x) = x on the interval $[0, \frac{\pi}{2}]$

4. Use the IVT to show that the equation $x^4 = 2^x$ has at least one solution (you need to choose an a and b value on your own)

5. By applying the Intermediate Value Theorem choose the interval over which $x^5 = 2x^4 + 11$ will have a solution.

a)
$$[-2, -1]$$
 b) $[-1, 0]$

b)
$$[-1,0]$$

6. Let f be a continuous function on [2,4] and have the values shown.

The equation f(x) = k must have at least 2 solutions on [2, 4] for which value(s) of k?

1	,		0
a)	k	>	9

x	2	3	4
f(x)	5	0	9

b) 7

- c) 0 < k < 5
- d) k > 5
- e) 5 < k < 9

 f is continuous on [2,4] and has the values shown.

The equation f(x) = 3 must have at least 2 solutions on [2,4] for $k = \underline{\hspace{1cm}}$.

d) 5

\boldsymbol{x}	2	3	4
f(x)	5	k	9

- 8. Consider $f(x) = \begin{cases} x^2 5 & \text{for } x < 0, \\ 3 & \text{for } x = 0, \\ x^2 + 5 & \text{for } x > 0 \end{cases}$
 - a) $\lim_{x\to 0^+} f(x) =$ _____
 - b) $\lim_{x\to 0^-} f(x) =$ _____
 - c) $\lim_{x\to 3} f(x) = \underline{\hspace{1cm}}$
 - d) Where is f(x) discontinuous?
 - e) If a function is continuous at x = a, does this necessarily mean that $\lim_{x\to a}$ exists?

9. Consider $f(x) = \begin{cases} x+c & \text{for } x < -2, \\ cx^2 + 7 & \text{for } x \ge -2 \end{cases}$

For what value of the constant c is f continuous for all real numbers?