\qquad
Spring Semester Exam Review
All questions should be done without a calculator except for \#28-31. A completed review will be worth a curve on your exam.

Unit 7 Polynomials

Graph

EB -odd

$$
\text { 1. } y=-x(x+3)^{2}
$$

2. $y=(2 x-1)^{2}(x+5)^{2}+\operatorname{lv}$ ln

3. $y=-x^{3}(x-3)^{2}(x+5)$-odd
4. $y=-x^{3}(x-3)^{2}(x+5)$
5. Find the remainder when the polynomial $2 x^{4}+x^{3}-x+2$ is divided by the binomial $x-2$

Unit 8 Rational Functions
Find all asymptotes and graph
6. $\frac{2 x-3}{x-4}$
7. $\frac{x^{2}-1 \quad(x+1)(x-1)}{x^{2}+11 x-12} \frac{(x+12)(x-1)}{(x)}$
8. $\frac{x+6}{x^{2}-9}(x+3)(x-7)$

VA $x=4$ HA $y=2$
and list the intervals where the function is increasing and decreasing

$$
\begin{aligned}
& \text { Ils where the function is increasing and } \\
& \text { (e) min }-3.19 \text { e } x=-.16 \\
& -11.5 \text { e } x=2.57 \\
& \text { rel max }-2.41 \text { @ } x=.59 \\
& \text { int }[-.16, .59] \cup[2.57, \infty) \\
& \text { dec }(-\infty,-16] \cup[.59,7.57]
\end{aligned}
$$

$\frac{x^{2}-2 x-15}{x+3}(x-5)(x+7) \frac{x^{2}+1}{x+3}$
hole $e^{+3}(-3,-8)$ VA $x:-3$

Find the domain of the function
11. $\frac{2}{x^{2}-4 x+3}(x-3)(x-1)$
$x \neq 3 \quad x \neq 1$
$(-\infty, 1) \cup(1,3) \cup(3, \infty)$
Unit 9 Logs and Exponents
Write as a single log
12. $\frac{2}{3 x^{2}-7 x+6}$
$(3 x-1)(x-2)$
$x \neq 1 / 3,2$
$\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{1}{3}, 2\right) \cup(2, \infty)$
nola
-3) 101

13. $\log 25+\log 4$

$$
\log 100=2
$$

14. $6(\log a+\log b)$
$\log a^{6} b^{6} \cdot r \log (a b)^{6}$
15. $\ln 2 x+3(\ln x-\ln y)$
$\ln \frac{2 x \cdot x^{3}}{y^{3}}=\ln \frac{2 x^{4}}{y^{3}}$

Solve. Leave answers in terms of In if needed
16. $5^{x}=\frac{1}{25}$
-2
17. $\log _{3} 3^{x}=8$ or $\frac{\ln 8}{\ln 3}$
18. $\begin{aligned} & 27^{2 x-1}=9^{x+3} \\ & 3^{3(7 x-1)}=3^{2(x+7)}\end{aligned}$
$3(2 x-1)=2(x+7)$
20. $\log _{8} x=\frac{2}{3}$
21. $5 \log _{2} \frac{\left(\log _{3} 81\right)}{4}$
$5 \cdot \frac{\log _{1} 4}{2}$
$5.2^{2}=10$
$\begin{array}{rlr}\text { 22. } & 5 e^{x}-12=7 & 4 x=2 x+6 \\ 5 e^{x}=19 & x=9 / 4\end{array}$ $5 e^{x}=19$
$e^{x}=\frac{19}{5}$
$\ln \frac{14}{5}=x$

19. $\log _{4}(3 x-2)=2$

$$
\begin{aligned}
& y^{2}=3 x-2 \\
& 18=3 x \\
& x=18 / 3
\end{aligned}
$$

23. $\ln 1$

$$
\text { 25. } 2=\log _{3}(9 n+10)-\log _{3}(5 n)
$$

24. $\ln e^{3}$

3

$$
\begin{gathered}
2=\log _{3} \frac{a_{n}+10}{5 n} \\
9=\frac{9 n+10}{5 n} \\
4 S_{n}=9 n+10
\end{gathered} \quad\left[\begin{array}{l}
36 n=10 \\
n=3.6
\end{array}\right.
$$

26. $\ln 5+\ln (x+2)=\ln 7$
$\ln (5 x+10)=\ln 7$
$5 x+10=7$
$5 x=-3$
$x=-3 / 5$
27. $\log x+\log (x-9)=1$
$\begin{aligned} \log \left(x^{2}-9 x\right) & =1 \\ 10^{1} & =x^{2}-9 x \\ 0 & =x^{2}-9 x-10\end{aligned}$
$\begin{array}{ll}45 n=9 n+10 \\ \text { for } \# 28-31 \text {. Questions like these will be on the calculator portion of your test. } \\ & (x-10)(x+1)\end{array}$
You may use a calculator for \#28-31. Questions like these will be on the calculator portion of your test. $\quad(x-10)(x+1)$
28. A radioactive substance has a half-life of 420 years. How much remains of a 2 oz. sample after 200 years? $x=10$.

$$
\begin{aligned}
& 1=2 e^{420 r} \quad r=-.00165 \\
& .5=e^{420 r} \\
& \frac{\ln .5=\frac{420 r}{420}}{420}
\end{aligned}
$$

$$
x=2 e^{200(-.00165)}
$$

29. A bacteria culture has an initial count estimate of 4000 . After 20 minutes the count is 22,400 . What is the growth rate, and approximately how many minutes did it take for the culture to double?

30. $\$ 3000$ is invested in an account that pays 5% annual interest. How much more money would you make if the interest was compounded daily for 10 years instead of compounded quarterly?

31. How many years will it take an investment of $\$ 1000$ to double itself when interest is compounded continuously at 6% annually?

Unit 10 Conics

$$
\begin{aligned}
& 2000=1000 e \\
& 2=e^{.06 t} \\
& \frac{\ln 2}{1.06} \frac{.06 t}{.06}
\end{aligned}
$$

Tell which conic is represented by the equations
32. $2 x+3 y^{2}+17=0$ parabola
33. $8 x^{2}+4 y^{2}+3 x-2 y+17=0$
ellipse
34. $-3 x^{2}-3 y^{2}+4 x-2 y+5=0$
circle
35. $6 x^{2}-2 y^{2}+7 x+2 y-4=0$
hyperbola
Write the equation in standard form and draw a graph.
36. $\begin{aligned} & -4(x-1)^{2} \\ & 36 \\ & \frac{-9(y-3)^{2}}{36} \\ & \frac{(x-1)^{2}}{9}+\frac{(y-3)^{2}}{46}=1\end{aligned}$
37. An ellipse with endpoints

差: (en+1, ($-1,2) \frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{25}=1$
38. $x^{2}+y^{2}+6 x+4 y+12=0$
$\begin{aligned} & x^{2}+y^{2}+6 x+4 y+12=0 \\ & x^{2}+6 x+9 \\ &(x+3)^{2}+(y+2)^{2}=-12+4+9 \\ &=1\end{aligned}$

Unit 11 Series and Sequences
39. Write the first 5 terms of the sequence whose nth term is $a_{n}=n^{2}-3$

$$
a_{1}=-2 \quad a_{2}=1 \quad a_{3}=6 \quad a_{41}=13 \quad a_{5}=22
$$

40. If $a_{n}=a_{n-1}+5$ and $a_{1}=3$, find a_{2}, a_{3} and a_{4}

$$
\begin{aligned}
& \begin{array}{l}
a_{2}=3+5=8 \\
a_{3}=8+5=13 \\
\sum_{x=5}^{9}|4-x| \\
|4-5|+|4-6|+|4-7|+|4-8|+|4-9| \\
\text { 41. Evaluate } \\
\mid+2+3+4+5=15
\end{array} \quad \begin{array}{l}
a_{4}=13+5
\end{array} \quad \begin{array}{l}
\sum_{c=0}^{4}(-2)^{c} \\
(-2)^{0}+(-2)^{1}+(-2)^{2}+(-2)^{3}+(-2)^{4} \\
\mid+2+4+-8+16
\end{array}
\end{aligned}
$$

43-44: Rewrite using sigma notation:
$43 .-4-8-12-16-20$ $\sum_{n=1}^{5}-4 n$ or $\sum_{n=1}^{5}-4-4(n-1)$
44. $12+3-6-15$
$\sum_{n=1}^{4} 12-9(n-1)$

Determine whether the sequence is arithmetic, geometric or neither. If arithmetic or geometric, find the nth term.
45. 5, 7, 9, 11, 13...

46. $1 / 7,1,7,49$

Geometric
$\frac{1}{7}(7)^{n-1}$
47. 15, 17, 20, 23, 25...
neither

Find the sum of the series
48. $\frac{1}{3}-\frac{2}{3}+\frac{4}{3}-\frac{8}{3} \ldots$
diverges

$$
r=-2
$$

49. $25+5+1+\ldots$
$\frac{25}{1-1 / 5}=25 \div \frac{y}{5}=25 \frac{5}{4}=\frac{1250}{41.25}$

Unit 12 Polar and Parametric
Convert from polar coordinates to rectangular coordinates
50. $\left(5, \frac{\pi}{6}\right) \quad \begin{array}{ll}x & =S \cos \frac{\pi}{6}=S\left(\frac{\sqrt{3}}{2}\right) \\ y & =S \sin \frac{\pi}{6}=S\left(\frac{1}{2}\right)\end{array} \quad$ 51. $\quad\left(2, \frac{3 \pi}{4}\right) \quad \begin{aligned} & x=2 \cos \frac{3 \pi}{4}=2\left(-\frac{1}{\sqrt{2}}\right) \\ & y=2 \sin \frac{3 \pi}{4}=2\left(\frac{1}{\sqrt{2}}\right)\end{aligned}$

$$
\left(\frac{5 \sqrt{3}}{2}, \frac{5}{2}\right)
$$

Convert from rectangular coordinates to polar coordinates
52. $(-3,0)$

53. (-
$\begin{aligned} & (-2,-2) \\ & \tan \theta=\frac{-2}{-2} \\ & \tan \theta=1 \\ & \theta=\frac{5 \pi}{4}\end{aligned} \quad\left(2 \sqrt{2}, \frac{5 \pi}{4}\right)$
$r=\sqrt{(-2)^{2}+(-2)^{2}}=2 \sqrt{2}$

Eliminate the parameter and draw a graph for the following parametric equations

Use the graph of $f(x)$ below to find the following limits

58. $\lim _{x \rightarrow-6} f(x)=1$
59. $\lim _{x \rightarrow 0} f(x)=D / \mathbb{L}$
60. $\lim _{x \rightarrow 3} f(x)=D / L^{-}$
61. $\lim _{x \rightarrow 5} f(x)=\downarrow$
62. $\lim _{x \rightarrow 7} f(x)=-1$
63. $\lim _{x \rightarrow 10} f(x)=3$
64. $\lim _{x \rightarrow 0^{-}} f(x)=4$
65. $\lim _{x \rightarrow 0^{+}} f(x) \nexists$
66. $\lim _{x \rightarrow 3^{-}} f(x)=$
67.
$\lim _{x \rightarrow 3^{+}} f(x)=-1$

