District Portion Semester Exam Review

Name: Rey

All of the district portion will be multiple choice, with calculator allowed. Check your answers on mskmath.com!

1. The graph of f(x) and g(x) is shown below.

9 5 5 6 3 4 3 2 1 1 2 3 4 5 6 7 8 9

Fill out the following table:

g(x)
LIPC
963
none
in creasing from low

2. A finite series is shown below. What is the sum?

$$\sum_{n=1}^{4} (n^3 - 1) = (1)^3 - 1 + (2)^3 - 1 + (3)^3 - 1 + (4)^3 - 1 = 96$$

3. Given that $f(x)=3^{2x}$ and $g(x)=9^{x}$, graph the functions to determine the relationship between f(x) and g(x).

4. Westin purchased a piece of land in the shape of a right triangle on which to plant an apple orchard. On the first row of trees Westin planted 20 trees. Each subsequent row contained 2 less trees. How many apple trees would be planted on the sixth row?

20, 18, 16, ... Arithmetic a=20 d=2 $a_{0} = 20 + (-2)(b-1)$ 10 trees

5. The free-fall speed of an object, in terms of distance, measured in meters, can be modeled by the function

 $s(d) = 4d^{\frac{1}{2}}$. If the free-fall speed is measured at <u>5.657 meters/second</u>, approximately how far has the object fallen?

5.657 = 4d2

6.657 = 4 a 4 (1.4142 G= (d¹/₂)²

d=2m

6. Find the inverse for the function $f(x) = (x-2)^3 + 1$

(calculator)

 $X = (y-2)^3 + 1$ $\sqrt[3]{X-1} = \sqrt[3]{(y-2)^3}$ $\sqrt[3]{X-1} + 2 = Y$

7. A new high school starts with a population of 600 freshmen and sophomore students. Each year, the population increases by 35% per year. The school's population can be modeled by the function $p(x) = 600(1.35)^x$, where x represents time in years and p(x) represents population of students.

Describe the end behavior of the function.

AS X>W, Y>W

8. Describe the discontinuities for the graph of the function Twhere you have to pick up your pencil

vertical asymptote at X=-2

Removeable discontinuity@x=4

9. An algebraic expression involving logarithms is shown below. Condense to a single log.

$$2\log(x-2) - \frac{1}{2}\log(x+2) + 6\log(x-1)$$

109 (x-2)2-109 (x+2) 1/2+ 109 (x-1) 10

(same base, can condense!)

100

10. The equation of a rational function is shown below.

 $f(x) = \frac{x^2 - 16}{x^2 - 6x + 8} = \frac{(x - 4)(x + 4)}{(x - 4)(x - 2)} \quad \text{note @ } x = 4 \qquad y = \frac{4 + 4}{4 - 2} = \frac{8}{2} = 4 \qquad (4, 4)$

Describe the left-sided behavior and right-sided behavior of the rational function as $x \to 4$.

AS $X \to 4$ right Side

11. Which series of function compositions can be used to represent $f(x) = \frac{x^2 + 4}{x^2 + 1}$?

$$g(x) = \frac{x}{x-3}$$
 $h(j(x)) = h(x^2)$
= $x^2 + 4$

h(x) = x+4 $i(x) = x^{2}$ $g(h(j(X))) = g(X^{2}+4) = \frac{x^{2}+4}{x^{2}+4-3} = \frac{x^{2}+4}{x^{2}+1}$

 $f(x) = h(j(x)) \quad \text{B. } f(x) = g(h(j(x))) \quad \text{C. } f(x) = j(h(g(x))) \quad \text{D. } f(x) = g(j(h(x)))$

12. Write a rational function that has both a vertical and an	oblique asymptote.
12. Write a rational function that has both a vertical and an bottom=0 13. The cost to inoculate x% of a population from a single st	1 onedegree $y = \frac{x + 2x}{x + 2}$ etc
13. The cost to inoculate x% of a population from a single st	rain of flu virus in hillions of dellars C.
formula $C(x) = \frac{320}{100 - x}$. If the CDC has a budget of 7 k	pillion dollars to spend on inoculations, then what is the
maximum percentage of the population that it can affor	= 7
COTONITOR	
Y= 54.29%	$7 = \frac{320}{320}$
14 Given the graph of the	$0R = \frac{320}{100-x}$ x = 64.29
14. Given the graph of the power function, $f(x) = -3x^{\frac{1}{6}}$, d	escribe the end behavior of the graph.
4	
2-	
1	AS X→∞, Y→-∞
4 -3 -2 -1 1 2 3 4 5 6 7 8	x 9
1-	
-3	
4	
6	
7-	
-8-	
15. Given the polynomial function $f(x) = \frac{1}{2}(x+4)^2 - 5$ de	scribe the transformations of the
15. Given the polynomial function $f(x) = \frac{1}{3}(x+4)^2 - 5$, de Write "none" if the transformation does not apply. a. Vertical Shift: 40 W 5	vert. comp/stretch > multiply
a. Vertical Shift: dow \(\sigma \)	on outside
b. Horizontal Shift: left 4 c. Vertical Compression/Stretch: by a factor d. Horizontal Compression/Stretch: none	horiz completetch >
c. Vertical Compression/Stretch: by a factor	of 1/2 multiply on inside
d. Horizontal Compression/Stretch: none	
	3 ★ f(t)
	\uparrow
\-3	-2 -1 -1 1 2 3
16. Find and justify the symmetry of the graph shown.	0 -2 - 0
EV:	EN, symmetric over y-axis
17. The price per unit, $p(q)$, of a popular copy machine, in term	ms of the quantity of conv machines demanded a is
given by the formula $p(q) = 1500 - 150 \ln(q)$. Predict th	e number of copy machines demanded if the price per
unit is \$500. 500 = 1500 - 150 lng	6.67=1ng
unit is \$500. $500 = 1500 - 150 \ln 3$ $-1000 = -150 \ln 3$	e6.67 = 9 [786 machines]
19. Cranh the Carrier 150	0 =
18. Graph the function $f(x) = -2x^3 - 2x^2 + x + 3$. List the do	omain and range and where the function is increasing
and/or decreasing. CALCULATOR	

(-860, L933) | vange: $(-\infty, \infty)$ in creasing: (-.860, .194) decreasing: $(-\infty, -.860) \cup (.194, \infty)$

19. Find a function for which an inverse function does not exist.

constant function, ex. y=2 (inverse would be x=2, which is not a function!)

20. The weight of a radioactive material in grams, w, over a period of weeks, t, is given by the table sh elow.

+	0	1	7 7 7 7 7 7	a period of wet	cks, t, is given t	by the table show	vn be
	U	1	2	3	4	5	
W	50	47	43	40	27	3	
Ilcina the	4-1-1- C 1		1.0	40	3/	35	

Using the table of values, which equation best represents the data? Plug each answer choice into

A.
$$w = 50 - 3t$$

8.
$$w = 50t^{0.93}$$

C.
$$w = 50(0.93)^t$$

$$W = 50 + (0.93)^t$$

C. $w = 50(0.93)^t$ $p = 50 + (0.93)^t$ 1 = 1, which table matches hest?

21. Describe the following behavior.

- Right side behavior as $x \to -2$, $f(x) \to 2$
- Left side behavior as $x \to -2$, $f(x) \to 2$

If there wasn't a hole at x=-2, what would the y-value be?

22. List all solutions to the equation
$$x^3 - 7x^2 + 12x = 0$$
.

 $x(x^2-7x+12)=0$ x(x-3)(x-4)=0 x=0 x-3=0 x-4=0

- 23. If $f(x) = \log x$, list all of the transformations for the function f(0.5(x-3)) + 1.
 - a. Vertical Shift: **VP**
 - b. Horizontal Shift: right 3
 - c. Vertical Compression/Stretch: \\OV\
 - d. Horizontal Compression Stretch: by Scale factor of 2

new function:

109 (0.5(x-3)) +1

24. A new employee earns \$53,000 during his first year of work and receives a 2% raise each year. Write a sigma notation that could be used to determine the total amount earned by this employee over the first 10 years. Remember, it's a RAISE, he doesn't lose the money!

geometric 0=53000 v=1.02 (NOTa02)

\$53000 (1.02)n-1

25. The equation for a rational function is given below.

$$f(x) = \frac{2}{x+3} - 4$$

- Fill in the following information: a. Domain: $(-\infty)$ -3) \vee (-3, \otimes)
- b. Range: (-∞,-4) ∪ (-4, ∞)
- c. Horizontal asymptote: $\gamma = -4$
- d. Vertical asymptote: $\chi = -3$
- e. Is the function increasing or decreasing? decreasing on domain (-0,-3) U(-3,00)