Polar and Parametric Test Review

Part 1: Polar (all non-calculator)

Plot the coordinates and convert from polar coordinates to rectangular coordinates

3.
$$C\left(1, -\frac{2\pi}{3}\right)$$

Convert from rectangular coordinate to polar coordinates

6.
$$(3,3\sqrt{3})$$

Convert the equation from rectangular to polar

8.
$$x^2 + y^2 = 25$$

9.
$$y = 2$$

Convert the equation from polar to rectangular

10.
$$r\cos\theta = 4$$

11.
$$r = 4\sin\theta$$

Write the type of graph, make a table, and draw the graph

12.
$$r = 2 + 2\sin\theta$$

13.
$$r = 1 - 3\cos\theta$$

Type:

Type:

Write the type of graph, make a table, and draw the graph

14.
$$r = 3 - 2\sin\theta$$

15. $r = -4\cos\theta$

Type:

Type:

15. Describe the difference between the graph of $r = 2\sin 3\theta$ and $r = 3\sin 2\theta$

Part 2: Parametric (non-calculator)

Graph the parametric equations (show direction with arrows) and eliminate the parameter to find a rectangular equation

1.
$$x = 2t + 3$$

 $y = -t + 1$

2.
$$x = t^2 - 1$$
 $y = t^2 + 1$ $1 \le t \le 3$

3.
$$x = 1 - t^2$$
 $y = 1 + t$

4.
$$x = 5\cos(t) + 1$$

 $y = 5\sin(t) - 3$

$$x = 5\sin(t)$$

5. $y = 3\cos(t)$

$$y = 3\cos t$$

$$0 \le t \le \pi$$

$$x = \cos(-t)$$

$$\mathbf{6.} \quad y = \sin(-t)$$

$$0 \le t \le \pi$$

Write a set of parametric equations to model the following situations 7. An ellipse, centered at the origin, with end points (0,-2), (0,2), (-3,0), (3,0) that rotates clockwise	
8. A circle centered at (2,3) with a radius of 4 t	that rotates counter-clockwise
9. A wall 300 feet away that is 20 ft tall with a) t-max 10 b)t-max 2	2 c)t-max 5
10. A cannon shoots a ball from 5 feet off the g breeze blowing with the ball at 5 ft/sec	ground at an initial velocity of 200 ft/sec at an angle of 39°, with a
Part 3 Parametric-Calculator 11. A long jumper leaves the ground with an init time of flight, the horizontal distance traveled,	ial velocity of 31 ft/sec at an angle of 22-degrees. Determine the and the peak height of the long-jumper.
·	f 44 ft/s at an angle of 55-degrees. If the cross bar of the goal ick be good? What if the wind was blowing in at 3 ft/s?
ft/sec. The angle of elevation of the ball off th	elocity of 130 ft/sec. There is a wind blowing with the ball at 3 e bat is 25° and the ball hits the bat 2 ft off the ground. Give the ball. At what time is the ball 200 ft away? Will the ball clear a 10