Polar and Parametric Test Review

Part 1: Polar (all non-calculator)

Plot the coordinates and convert from polar coordinates to rectangular coordinates 1. $A\left(3, \frac{7 \pi}{6}\right)$
2. $B\left(-2, \frac{3 \pi}{4}\right)$
3. $C\left(1,-\frac{2 \pi}{3}\right)$
4. $D(-3,0)$

Convert from rectangular coordinate to polar coordinates
5. $(2,-2)$
6. $(3,3 \sqrt{3})$
7. $(0,-4)$

Convert the equation from rectangular to polar
8. $x^{2}+y^{2}=25$
9. $y=2$

Convert the equation from polar to rectangular
10. $r \cos \theta=4$
11. $r=4 \sin \theta$

Write the type of graph, make a table, and draw the graph
12. $r=2+2 \sin \theta$

Type:

13. $r=1-3 \cos \theta$

Type:

Write the type of graph, make a table, and draw the graph
14. $r=3-2 \sin \theta$

Type:

15. $r=-4 \cos \theta$

Type:

15. Describe the difference between the graph of $r=2 \sin 3 \theta$ and $r=3 \sin 2 \theta$

Part 2: Parametric (non-calculator)

Graph the parametric equations (show direction with arrows) and eliminate the parameter to find a rectangular equation

1. $\begin{aligned} & x=2 t+3 \\ & y=-t+1\end{aligned}$
2. $x=t^{2}-1 \quad 1 \leq t \leq 3$
3. $x=1-t^{2}$
$y=1+t$
4. $x=5 \cos (t)+1$
$y=5 \sin (t)-3$

$$
y=5 \sin (t)-3
$$

$$
x=5 \sin (t)
$$

$$
x=\cos (-t)
$$

5. $y=3 \cos (t)$
$0 \leq t \leq \pi$
6. $y=\sin (-t)$
$0 \leq t \leq \pi$

Write a set of parametric equations to model the following situations
7. An ellipse, centered at the origin, with end points $(0,-2),(0,2),(-3,0),(3,0)$ that rotates clockwise
8. A circle centered at $(2,3)$ with a radius of 4 that rotates counter-clockwise
9. A wall 300 feet away that is 20 ft tall with
a) t - $\max 10$
b)t-max 2
c)t-max 5
10. A cannon shoots a ball from 5 feet off the ground at an initial velocity of $200 \mathrm{ft} / \mathrm{sec}$ at an angle of 39°, with a breeze blowing with the ball at $5 \mathrm{ft} / \mathrm{sec}$

Part 3 Parametric-Calculator
11. A long jumper leaves the ground with an initial velocity of $31 \mathrm{ft} / \mathrm{sec}$ at an angle of 22 -degrees. Determine the time of flight, the horizontal distance traveled, and the peak height of the long-jumper.
12. A football is kicked with an initial velocity of $44 \mathrm{ft} / \mathrm{s}$ at an angle of 55 -degrees. If the cross bar of the goal post is 10 feet high and 45 feet away, will the kick be good? What if the wind was blowing in at $3 \mathrm{ft} / \mathrm{s}$?
13. A baseball player hits a ball with an initial velocity of $130 \mathrm{ft} / \mathrm{sec}$. There is a wind blowing with the ball at 3 $\mathrm{ft} / \mathrm{sec}$. The angle of elevation of the ball off the bat is 25° and the ball hits the bat 2 ft off the ground. Give the set of parametric equations for the path of the ball. At what time is the ball 200 ft away? Will the ball clear a 10 ft high fence 400 ft away?

