Name: _____ Date: ____ Period: _
CBA 1 Review AMON USE COLOMOTOR ON ALL GUESTONS A

- 1. List the domain and range of each of the following parent functions.
 - I. $f(x) = \sqrt{x}$ D. $(0, \infty)$ R. $(0, \infty)$
 - II. $f(x) = x^3$ D: $(-\infty, \infty)$ R: $(-\infty, \infty)$
 - $f(x) = \log x \, D^{2} \left(0 \, | \, \infty \right) \, \mathcal{E}^{2} \left(-\infty \, | \, \infty \right)$
 - $f(x) = 2^x \mathcal{D} \cdot (-\infty, \infty) \quad \mathbb{R}^2 \cdot (0, \infty)$
- 2. The graph of f(x) is shown below. What is the range of $f^{-1}(x)$ and how does it compare to the domain of f(x)?

 $ext{supplies} = (x)$ (x) (x)

The range of f-'(x) is the domain of f(x).

3. Circle ALL of the true statements below.

y = x is an odd function because it is symmetric about the y-axis.

 $y = x^2$ is an odd function because it is symmetric about the origin. 11.

 $y = x^3$ is an odd function because it is symmetric about the origin. III.

y = |x| is an even function because it is symmetric about the y-axis. IV.

- 4. The cost of the salt used to fill up the salt shakers on the tables in a restaurant is given by the function f(x) = 8x - 2, where x represents the number of quarts of salt used and f(x) represents the cost. If f(5a) = 90, what is the value of a? $0 = 2 \cdot 7$ 90 = 8(59) - 2
- 5. Find the end behavior for each of the graphs.

As $x \to -\infty$, $y \to -\infty$

As $x \to -\infty, y \to 0$

6. Given the function, $f(x) = 4x^3 - 3x^2 - 25x - 6$, on what intervals is $f(x) \le 0$? (Be careful - this question is not asking when is the graph increasing/decreasing!!)

x=3 (-w,-2]V[-.25,3]

7. The graph of a rational function is shown below. Circle all of the key attributes that correctly describe the rational function.

The function is increasing on the interval $(-\infty, -3)$

The domain is (0,∞) (the range is!)

The function has vertical asymptotes at x = -3.

The function has a horizontal asymptote at y=2 (V=0)

The function has a removable discountinuity at x = -2.

8. The volume of a box can be found with the function *V*, where *x* is the length of the shorted edge of the box.

$$V(x) = 8x^3 + 32x^2 + 30x$$

What is the length of the shortest edge of the box if it has a volume of 11500 cubic units?

V(X)=11500

use colculator (TABLE)

9. List the transformations of the function -0.3 f(x + 4) - 5, when $f(x) = x^7$.

Vertical shift: down5

Vertical stretch/compression: 0 f 0.3 (568)

Horizontal

None stretch/compression:

Reflections: ONEXX-QXIC

10. Graph the function $f(x) = 4x^3 - 3x^2 - 25x - 6$ in your calculator. Circle the statements that are **not** true about the graph.

The function has a zero at (-3,0) (positive 3)

The function has a zero at (-2,0)

The function is increasing on $(0,\infty)$ increasing $(-\infty,-1.215)$ \cup $(1.715,\infty)$ VIII.

TV: The function has a domain of all real numbers.

-V. The function has one complex root.

3 mots possible all visible!

6. Given the function $g(x) = (2x+1)^2 - 4$ and g(x) = f(h(x)), which pair of functions could represent f(x) and h(x)? and h(x)?

(1.) f(x) = x - 4 and $h(x) = (2x + 1)^2$ II. $f(x) = x^2 - 4$ and h(x) = 2x + 1

III. f(x) = x - 4 and $h(x) = x^2 - 4$ III. $f(x^2 - 4) = (x^2 - 4) - 4 = x^2$

11. The population of a town from 2010 to 2015 can be represented using the function

 $f(x) = .35x^4 + 3.1x^3 + 250.5x^2 - 1100x + 15000$, where x represents the number of years since 2010.

Approximately when will the population reach 70,000?

2010+14

- A. About 2011
- B. About 2020

C. About 2024

D. About 2015

use calculator, when does y=70000?