Sequences

\＆
Series

：UO！！D＋ON DUD！！S

：Sə！コəS

Ex I. I, 3, 5, 7, q

Ex 2. Find the first Ч terms \& the l00th term
A. $a_{n}=\frac{1}{2^{n}}$
B. $a_{n}=(-1)^{n}$
C. $a_{n}=(-1)^{n+1}$

Recursive Sequence

Ex 3. $a_{n}=a_{n-1}+3 \quad a_{1}=1$

Partial Sums

Ex 4 . Find $S, S_{2}, \& S_{3}$ for $a_{n}=2 n+3$

Series \& Summation Notation

Ex 5. $\sum_{x=4}^{10} 2 x$
Ex6. $\quad \sum_{i=3}^{5} i^{2}+2$

Ex 7. Write in sigma notation $3^{3}+3^{4}+3^{5}+\ldots+3^{20}$

Summary:

BLank BLank

$$
\text { Ex } 2 . \quad 4,8,12,16, \ldots
$$

Ex 3. Find the nth term for $7,5,3, \ldots$

Series
partial Sum Formulas
$E \times Ч$. Find the sum of the first 30 odd numbers.

Summary:

 Geometric Sequences and SeriesDirect Formula:

ExI. 2, Ч, 8, , $6, \ldots$

$$
\text { Ex 2. } \quad 18,6,2, \ldots
$$

Ex 3. Find the nth term $-3,1,-\frac{1}{3}, \frac{1}{9}, \ldots$

Series
Partial Sum Formula

Ex 4 . Find the sum of the series $3+6+12+24+\ldots+768$

Infinite Geometric Series

$$
1+2+4+8+16+\ldots \quad \text { vs. } \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots
$$

* If $|r|<1 \quad$...

Summary:

Unit 2 Formulas

$$
\begin{array}{ll}
a_{n}=a+d(n-1) & S_{n}=\frac{n}{2}[2 a+d(n-1)] \\
S_{n}=a\left(\frac{1-r^{n}}{1-r}\right) & a_{n}=a(r)^{n-1} \\
S_{n}=n\left(\frac{a+a_{n}}{2}\right) & S=\frac{a}{1-r} \\
\binom{n}{r}=\frac{n!}{r!(n-r)!} &
\end{array}
$$

Binomial Expansion

$$
\begin{array}{lr}
(a+b)^{0} & \text { Binomial Expansion Theorem } \\
(a+b)^{1} & (a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
(a+b)^{2} &
\end{array}
$$

- Coefficients

Combination Notation \& Formula

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Ex. $\binom{8}{5}$
Coefficients \& Pascal's Triangle

- Exponents

Examples

I. Expand $(x+2)^{5}$
2. Find the 7 th term of $\left(x^{2}+2 y\right)^{10}$

Summary:

