6.1 Law of Cosines

\qquad
Solve for the length of the missing side of each triangle. Round your answer to the nearest tenth.

1. $\mathrm{m} \angle \mathrm{C}=113^{\circ}, \mathrm{a}=13, \mathrm{~b}=23$

$$
c=30.5
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$c^{2}=13^{2}+23^{2}-2(13)(23) \cos 113^{\circ}$
$\sqrt{c^{2}} \approx \sqrt{931.657}$
2. $m \angle A=32^{\circ}, b=23, c=47$
$a=30.1$

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$a^{2}=23^{2}+47^{2}-2(23)(47) \cos 32^{\circ}$
$\sqrt{a^{2}} \approx \sqrt{904.520}$

Solve each triangle for the specified angle measure. Round your answer to the nearest degree.
3. $a=11, b=14, c=17 ; m \angle A$
$m \angle A=40^{\circ}$

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$11^{2}=14^{2}+17^{2}-2(14)(17) \cos A$
$-364=-476 \cos A$ $\cos ^{-1}\left(\frac{304}{476}\right)=m \angle A$
4. $a=17, b=17, c=24 ; m \angle C$
$m \angle C=90^{\circ}$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$24^{2}=17^{2}+17^{2}-2(17)(17) \cos C$
$-2=-578 \cos C$
$\cos ^{-1}\left(\frac{2}{5 月}\right)=m \angle C$
Solve each $\triangle P Q R$. Round lengths to the nearest tenth, and angles to the nearest degree.
5. $\mathrm{m} \angle \mathrm{P}=83^{\circ}, \mathrm{r}=43, \mathrm{q}=51$

$$
\begin{aligned}
& m \angle Q=54^{\circ} \\
& m \angle R=43^{\circ} \\
& p=62.6
\end{aligned}
$$

$p^{2}=q^{2}+r^{2}-2 r q \cos p$
$p^{2}=51^{2}+43^{2}-2(51)(43) \cos 83^{\circ}$

