4 Add Subtract Polynomials.notebook

Quiz \& completed HW 4.6 Due Friday
Algebra I - Unit 7: Topic 1 - Division Properties of Exponents Practice -Division Properties of Exponents pp 467-470 Name \qquad Date \qquad Period
Simplify the expressions below:

1. $\frac{-3 x^{7}}{6 x^{3}}$
2. $\frac{15 x^{-3}}{x}$

$$
\begin{aligned}
& \text { 3. } \frac{8 x^{6} y^{6}}{2 x^{6} y^{6}}=\frac{8 x \times x \times x \times 4}{2 x \times x \times 4} \\
& 8 \div 2
\end{aligned}
$$

\square
4. $\left(\frac{x^{-5}}{x^{-2}}\right)^{5}$
5. $\frac{x^{9} y}{\left(x^{2} y^{9}\right)^{2}}$
7. A rectangular parking lot has an area of $10 a^{3} b^{6}$ square yards. If the length of the park is $2 a^{3}$, what is the width of the park?
8. Which expression best represents he simplification of $\left(3 m^{-2} n^{4}\right)\left(-4 m^{6} n^{-7}\right)$?

F $-\frac{12 m^{4}}{n^{3}}$
G $-\frac{1}{12 m^{4} n^{3}}$
H $-\frac{m^{4} n^{3}}{12}$
J $-\frac{12 n^{3}}{m^{4}}$
9. Which expression is equivalent to
$\left(-5 a b c^{4}\right)\left(-3 a^{3} c^{2}\right)\left(-4 a^{2} b^{4} c^{3}\right)$?
A. $-12 a^{6} b^{5} c^{9}$
B. $-12 a^{6} b^{4} c^{24}$
C. $-60 a^{6} b^{5} c^{9}$
D. $-60 a^{9} b^{9} c^{9}$
10. The volume of a rectangular prism is $125 x^{3}$ cubi units, and the area of its base is $25 x^{2} y^{2}$ square units. What is the height of the prism in units if $x>0$ and $y>0$?

$$
\frac{V}{B}=\frac{B h}{B}
$$

$$
\frac{125 x^{3}}{25 x^{2} y^{2}}=\frac{5 x}{1^{2}}
$$

PoleIIOMR15

coefficient	term
mononomal	Binomal
trinomial	polsnomial
adding polinomals	surtracting polunomats

Tonight's HW: 1 page!
 Algebra I - Unit 7: Topic 2 - Adding and Subtracting Polynomials

Practice - Adding and Subtracting Polynomials $\underset{\text { pp }}{ } \mathbf{4 7 6 - 4 8 9}$
Classify each polynomial according to the number of terms.

1. $5 n^{3}+4 n$
2. $4 y^{6}-5 y^{3}+2 y-9$
3. $3 b^{7}+9 b^{5}+2 b^{7}-5$
4. $\frac{1}{4} w x^{5} y^{2} z^{2}$

Simplify the following polynomials.
5. $3 x^{3}-4-x^{3}+1$
6. $4.4 x^{2}+3.1 x-6.3 x-2 x^{2}$
7. $\left(2 t^{2}-8 t\right)+\left(8 t^{2}+9 t\right)$
8. $\left(-7 x^{2}-2 x+3\right)+\left(4 x^{2}-9 x\right)$
9. $\left(3 s^{4}+4 s\right)-\left(-10 s^{4}+6 s\right)$
10. $\left(3 x^{2}-x\right)-\left(x^{2}+3 x-x\right)$
11. $\left(x^{2}-3 x+7\right)+\left(2 x-5+3 x^{2}\right)-\left(x^{2}-6 x\right)$ 12. $\left(3 x^{2}-2 x+8\right)-\left(x^{2}-4\right)+\left(-4 x^{2}-5 x-2\right)$
12. The recreation field at Huffines Park is shaped like a rectangle with a length of $15 x$ yards and a width of $10 x-3$ yards. Write a polynomial in simplest form for the perimeter of the field. Then calculate the perimeter if $x=2$.
13. Darnell and Stephanie have competing vending machine businesses. Darnell's profit can be modeled with the polynomial $c^{2}+8 c-100$. Were c is the number of items sold. Stephanie's profit can be modeled with the polynomial $2 c^{2}-7 c-200$. Write a polynomial in simplest form to show how much money they can expect to earn if they decided to combine their businesses.

Remember: DON'T CHANGE EXPONENTS

Only combine coefficients!!

DISTRIBUTE the negative to the $2 n d$ set of parenthesis.

Answers:

1. Binomial
2. Polynomial
3. Trinomial
4. Monomial
5. $2 x^{3}-3$
6. $2.4 x^{2}-3.2 x$
7. $10 t^{2}+t$
8. $-3 x^{2}-11 x+3$
9. $13 s^{4}-2 s$
10. $2 x^{2}-3 x$
11. $3 x^{2}-7 x+2$
12. $-2 x^{2}-7 x+10$
13. $P=50 x-6$; 94 yards
14. $3 c^{2}+c-300$

Quiz Averages

2nd - 59
3rd - 60
Extra Credit Exponents Puzzle (for +50 points on quiz) is due Thursday.
Thursday's quiz also covers exponents.
5th - 64
Tutoring: Tues PM Wed AM/PM
7th - 60
Not available Tues or Thurs AM

