WARM-UP THURSDAY

Factor the following polynomials and find all solutions

$$g(x) = x^{2} - 5x - 6 \qquad f(x) = (3x^{3} + 4x^{2})(-27x - 36)$$

$$g(x) = (x - 6)(x + 1) \qquad x^{2}(3x + 4) - 9(3x + 4)$$

$$\begin{cases} 2 (-13) & x - 6 = 0 \\ x - 6 & x = 0 \end{cases}$$

$$x - 6 = 0 \quad x + 1 = 0 \quad (3x + 4)(x^{2} - 9)$$

$$x = 6 \quad x = 0 \quad (3x + 4)(x + 3)(x + 3)$$

ABOUT ME:

- I. Would you rather play a villain or a hero in a movie?
- 2. Cookies or cake?

How do I use the factor and remainder theorems to simplify polynomials?

REMAINDER THEOREM:

If P(x) is divided by x-c, then the remainder is equal to P(c).

Plug in C (change sign) to equation,

gives remainder

ex. What is the remainder when P(x) is divided by f(x)?

A.
$$P(x)=2x^3-7x^2+5$$
 $f(x)=x-8$
 $2! 2 - 7 0 5$ $P(3)=2(3)^3-7(3)^2+5$
 $2! 2 - 1 - 3! - 4 0$ $P(3)=-4 0$

B.
$$P(x) = x^{79} + 3x^{24} + 5$$
 $f(x) = x + 1$ even power $\frac{1}{3} + \frac{1}{3} + \frac{1}{$

C.
$$P(x) = 3x^{4} = 8x^{2} + \|x + 5 f(x) = x + 2$$

 $P(-2) = 3(-2)^{4} - 8(-2)^{2} + 11(-2) + 5 = -1$
 $-2 = 3 - 6 + 3 - 6$

How do I use the factor and remainder theorems to simplify polynomials?

FACTOR THEOREM:

c is a zero of P if and only if x-c is a factor of P(x).

A remainder of zero means you have a factor!

ex. Show that x-3 is a factor of
$$f(x) = x^3 - 4x^2 + 2x + 3$$

 $f(3) = 3^3 - 4(3)^2 + 2(3) + 3$
 $f(3) = 0$

ex.
$$P(x)=x^3-7x+6$$

Show that Lisa zero and factor completely.

$$(X - 1)(X^2 + X - 0)$$

$$(x-1)(x-2)(x+3)$$

How do I use the factor and remainder theorems to simplify polynomials?

FINDING A SPECIFIED POLYNOMIAL.

ex. Find a polynomial with the degree n and the given zeros.

A. n =4 and zeros are
$$-6, -5, 12$$

 $f(x) = (x+6)(x+5)(x-1)(x-2)$
 $degree = 4 :$

B.
$$n=3$$
 and the zeros are -5, 2
 $f(x) = (x+6)(x-2)^2$
 $0R$
 $(x+6)^2(x-2)$

8.4 -Remainder and Factor Theorems

Find the zeros of the given polynomials algebraically by factoring and setting each factor equal to zero. Check your answers with your calculator.

1.
$$f(x) = x^2 + 7x$$

2.
$$g(x) = x^2 - 5x - 6$$

2.
$$g(x) = x^2 - 5x - 6$$
 3. $h(x) = 6x^2 + x - 1$

4.
$$f(a) = (a+3)^2 - 64$$

5.
$$g(t) = 3t^3 - 27t$$

4.
$$f(a) = (a+3)^2 - 64$$
 5. $g(t) = 3t^3 - 27t$ **6.** $k(y) = 9y^4 + 3y^3 - 6y^2$

7.
$$h(x) = x^3 - 5x^2 - x + 5$$

7.
$$h(x) = x^3 - 5x^2 - x + 5$$
 8. $f(x) = 3x^3 + 4x^2 - 27x - 36$ **9.** $k(x) = 8x^3 - 12x^2 - 6x + 9$

$$k(x) = 8x^3 - 12x^2 - 6x + 9$$

Find the remainder when f(x) is divided by g(x), without using division.

10.
$$f(x) = x^{10} + x^8;$$
 $g(x) = x - 1$

$$g(x) = x - 1$$

11.
$$f(x) = x^6 - 10$$
; $g(x) = x - 2$

$$g(x) = x - 2$$

12.
$$f(x) = 3x^4 - 6x^3 + 2x - 1$$
; $g(x) = x + 1$

$$g(x) = x + 1$$

13.
$$f(x) = x^3 - 2x^2 + 5x - 4;$$
 $g(x) = x + 2$

$$g(x) = x + 2$$

Use the Factor Theorem to determine whether h(x) is a factor of f(x).

14.
$$h(x) = x - 1$$
 $f(x) = x^5 + 1$

$$f(x) = x^5 + 1$$

15.
$$h(x) = x - \frac{1}{2}$$

15.
$$h(x) = x - \frac{1}{2}$$
 $f(x) = 2x^4 + x^3 + x - \frac{3}{4}$

16.
$$h(x) = x + 2$$

$$f(x) = x^3 - 3x^2 - 4x - 12$$

17
$$h(x) = x + 1$$

16.
$$h(x) = x + 2$$
 $f(x) = x^3 - 3x^2 - 4x - 12$ **17.** $h(x) = x + 1$ $f(x) = 14x^{99} + 65x^{56} - 51$

Find a polynomial with the given degree, n_r , the given zeros, and no other zeros.

- **18.** n = 3; zeros 1, 7, -4
- **19.** n = 3; zeros 1, -1
- **20.** n = 5; zero 2

- **21.** Find a polynomial function g of degree 3 such that g(10) = 17 and the zeros of g(x) are 0, 5, and 8.
- **22.** Find a polynomial function f of degree 4 such that f(3) = 288 and the zeros of f(x) are 0, -1, 2, and -3.
- **23.** Find a number k such that x+2 is a factor of x^3+3x^2+kx-2 .
- **24.** Find a number k such that x-1 is a factor of $k^2x^4-2kx^2+1$.
- **25.** When $x^3 + cx + 4$ is divided by x + 2, the remainder is 4. Find c.