2.5 Graphs of Rational Functions

Name \qquad
Determine where the graph of the rational function is increasing and decreasing.

1. $\mathrm{f}(\mathrm{x})=\frac{2}{x-4}$
2. $\mathrm{f}(\mathrm{x})=\frac{x}{x+1}$
3. Describe the left-hand and right-hand side behavior of the following graph as it approaches $\mathrm{x}=-2$.

For \#4-7, also find common factor: \qquad remaining function: \qquad and RD: \qquad AND domain: \qquad
VA: \qquad HA: \qquad y-int: \qquad x-int: \qquad
4. $\mathrm{f}(\mathrm{x})=\frac{x^{2}-4}{x+2}$
5. $\mathrm{f}(\mathrm{x})=\frac{x^{2}+2 x-3}{x^{2}+6 x+9}$
5. $\mathrm{f}(\mathrm{x})=\frac{x-4}{x^{2}+2 x-24}$
6. $\mathrm{f}(\mathrm{x})=\frac{x^{2}-2 x}{x^{3}+5 x^{2}+6 x}$

57-64 ■ Find the slant asymptote, the vertical asymptotes, and sketch a graph of the function.
57. $r(x)=\frac{x^{2}}{x-2}$
59. $r(x)=\frac{x^{2}-2 x-8}{x}$
61. $r(x)=\frac{x^{2}+5 x+4}{x-3}$
63. $r(x)=\frac{x^{3}+x^{2}}{x^{2}-4}$

