Determine where the graph of the rational function is increasing and decreasing.

$$1. \qquad f(x) = \frac{2}{x-4}$$

$$2. \qquad f(x) = \frac{x}{x+1}$$

3. Describe the left-hand and right-hand side behavior of the following graph as it approaches x = -2.

For #4-7, also find common factor: ____ remaining function: ____ and RD: ____ AND domain: ____

VA: ____ HA: ___ y-int: ___ x-int: ___

4.
$$f(x) = \frac{x^2 - 4}{x + 2}$$

5.
$$f(x) = \frac{x^2 + 2x - 3}{x^2 + 6x + 9}$$

5.
$$f(x) = \frac{x-4}{x^2 + 2x - 24}$$

6.
$$f(x) = \frac{x^2 - 2x}{x^3 + 5x^2 + 6x}$$

57-64 ■ Find the slant asymptote, the vertical asymptotes, and sketch a graph of the function.

57.
$$r(x) = \frac{x^2}{x-2}$$

59.
$$r(x) = \frac{x^2 - 2x - 8}{x}$$

61.
$$r(x) = \frac{x^2 + 5x + 4}{x - 3}$$

63.
$$r(x) = \frac{x^3 + x^2}{x^2 - 4}$$