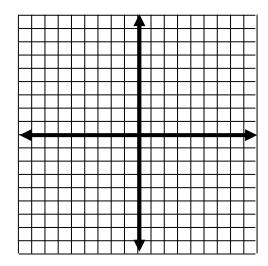
Review for Unit 2

Solutions will be at mskmath.com If you need more examples, finish your online quiz (or redo it!) and homework.

1.
$$f(x) = \frac{x+5}{x^2+3x-10}$$

Horizontal asymptote:


Removable discontinuity (hole):_____

Vertical asymptote:

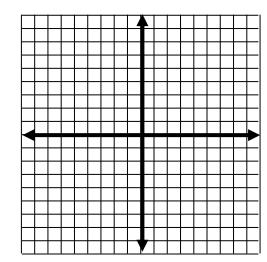
Slant asymptote:

x-intercept:

y-intercept:

2.
$$g(x) = \frac{4x^2 - 1}{x^2 - 9}$$

Horizontal asymptote:


Removable discontinuity (hole):_____

Vertical asymptote:

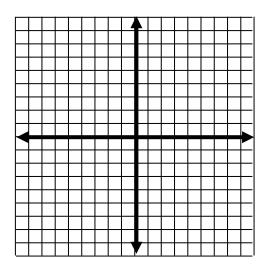
Slant asymptote:

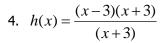
x-intercept:

y-intercept:

3.
$$h(x) = \frac{\left(x^3 - 25x\right)}{\left(x^2 - 4x - 21\right)}$$

Horizontal asymptote:


Removable discontinuity (hole):_____

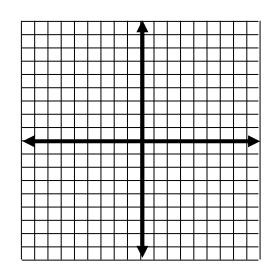

Vertical asymptote:

Slant asymptote:

x-intercept:

y-intercept:

Horizontal asymptote:


Removable discontinuity (hole):_____

Vertical asymptote:

Slant asymptote:

x-intercept:

y-intercept:

Solve the inequality. Find exact solutions when possible. If you need more practice, look at the evens from the solving inequalities homework.

5.
$$\frac{2}{x+3} + 2 \le 3$$

5.
$$\frac{2}{x+3} + 2 \le 3$$
 6. $x^3 - 2x^2 - 3x + 10 < 4x - 4$ 7. $4x^4 - 17x^2 + 4 \ge 0$ 8. $\frac{x+3}{x^2 - 2x - 8} \ge 0$

7.
$$4x^4 - 17x^2 + 4 \ge 0$$

8.
$$\frac{x+3}{x^2-2x-8} \ge 0$$

9. Is it possible to have a slant and a horizontal asymptote in the same graph? How do you know a rational equation will have a slant asymptote?

10. What is the only type of asymptote that cannot be crossed?

11. Given the following functions, what are the horizontal asymptotes, if they exist?

a)
$$\frac{x^2+2}{2x^2-3}$$

a)
$$\frac{x^2+2}{2x^2-3}$$
 b) $\frac{x}{x^3-2x+1}$ c) $\frac{x^3-2x+4}{x-1}$

c)
$$\frac{x^3 - 2x + 4}{x - 1}$$

12. Let f(x) = -3x + 7 and $g(x) = 2x^2 - 8$

a. Find f(g(x)) b. Find $g \circ f(x)$ c. Are these function compositions commutative?

13. If f(x) = 3x + 5 and $g(x) = x^2$, $f \circ g(3)$

14. If $f(x) = \frac{\sqrt{x-1}}{1+\sqrt{x-1}}$, write two functions g(x) and h(x) such that g(h(x))=f(x).

15. If $f(x) = \sqrt{\frac{x^3}{2}}$, write two functions g(x) and h(x) such that g(h(x))=f(x).

16. Verify if the following sets of functions are inverses of one another

$$g(x) = 4 - \frac{3}{2}x$$
a.

$$g(x) = -\frac{2}{x}$$

 $f(x) = \frac{1}{2}x + \frac{3}{2}$

$$g(x) = -\frac{2}{x} - 1$$

b.
$$f(x) = -\frac{2}{x+1}$$

17. Find the inverse of each function. State the domain of $f^{-1}(x)$

a.
$$f(x) = \sqrt[3]{x} - 3$$

b.
$$f(x) = -4x + 1$$

a.
$$f(x) = \sqrt[3]{x} - 3$$
 b. $f(x) = -4x + 1$ c. $f(x) = -x^2 - 2$ for $x \ge 0$

18. How do the range of the function of f(x) and the domain of $f^{-1}(x)$ compare?

