6.2 Law of Sines

\qquad
Solve each triangle for the indicated side to the nearest tenth.

1. $m \angle A=41^{\circ}, m \angle B=57^{\circ}, c=52$; find b

$$
b=44
$$

$$
\begin{aligned}
& \frac{\sin 57^{\circ}}{b}=\frac{\sin 82^{\circ}}{52} \\
& \frac{52 \sin 57}{\sin 82}=\frac{b \sin 82}{\sin 112}
\end{aligned}
$$

2. $\mathrm{m} \angle \mathrm{A}=35^{\circ}, \mathrm{m} \angle \mathrm{B}=56^{\circ}, \mathrm{a}=51$; find c

Solve each triangle PQR. Give angles to the nearest degree and sides to the nearest tenth.
3. $p=24, m \angle Q=51^{\circ}, m \angle R=38^{\circ}$

$$
\begin{gathered}
q=18.7 \\
r=14.8 \\
m<p=91^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sin 51}{q}=\frac{\sin 91}{24} \\
& \frac{\sin 38}{r}=\frac{\sin 91}{24}
\end{aligned}
$$

4. $q=48, m \angle P=63^{\circ}, m \angle R=51^{\circ}$

$p=46.8$
$m \angle Q=66^{\circ}$

5. $\mathrm{q}=75, \mathrm{~m} \angle \mathrm{P}=42^{\circ}, \mathrm{m} \angle \mathrm{R}=20^{\circ}$
$r=29.1$
$m \angle Q=118^{\circ}$

Solve the following word problem. Give sides to the nearest tenth.
6. From two points P and Q that are 140 ft apart, the lines of sight to a flagpole across a river make angles of 79° and 58° respectively, with the line joining P and Q. What are the distances from P and Q to the flagpole?

