4.2 Sinusoidal Functions as Mathematical Models (1) Name:

\qquad

1. Huckleberry Finn sat on the deck of a river steamboat. As the paddlewheel turned, a point on the paddle blade moved in such a way that its distance, d from the water's surface was a sinusoidal function of time. When his stopwatch read 6 seconds, the point was at its highest 15 feet above the water's surface. The wheel's diameter was 18 feet (part of the wheel is always underwater), and it completed a revolution every 14 seconds.
a.) Sketch a graph of this sinusoid.

b.) Write an equation for this sinusoid.

$$
y=6+9 \cos \frac{\pi}{7}(x-6)
$$

c.) Where was the point when Huck started his stopwatch?

$$
x=0 \quad 2.109 \mathrm{ft} \text { below surface }
$$

d.) Where was the point when Huck's stopwatch read 20 seconds?

$$
x=20 \quad 15 \mathrm{ft}
$$

e.) What is the first positive value of time at which the point was at the water's surface? At that time, was it going into or coming out of the water?

$$
y=0.874 \mathrm{sec} \text {, coming out of water }
$$

f.) When was the point 10 feet above the surface for the third time?

$$
17.526 \mathrm{sec}
$$

2. Researches find a creature from an alien planet and discover that its body temperature varies sinusoidally with time. 35 minutes after they start timing, it reaches a high of $120^{\circ} \mathrm{F}$. 20 minutes after that it reaches its next low, $104^{\circ} \mathrm{F}$.
a.) Sketch a graph of this sinusoid.

b.) Write an equation expressing the alien's temperature in terms of minutes since the researchers starting timing.

$$
y=112+8 \cos \frac{\pi}{20}(x-35)
$$

c.) What was its temperature when they started timing?

$$
x=0 \quad 117.657^{\circ} \mathrm{F}
$$

d.) Find the first three times after they starting timing at which its temperature was $114^{\circ} \mathrm{F}$.

$$
\begin{array}{ll}
\text { was } 114^{\circ} \mathrm{F} . & 3.391 \mathrm{sec} \\
y_{1}=\text { function } & 3.609 \mathrm{sec} \\
y_{2}=114 & 26.60 .4 \mathrm{sec}
\end{array}
$$

3. The original Ferris wheel, built by George Ferris for the 1893 World's Fair, was much larger and slower than its modern counterparts. It had a diameter of 250 feet and contained 36 cars, each of which held 40 people. It made one revolution every 10 minutes and reached a maximum height of 264 feet. Grover Cleveland was given a private ride. He got on and the wheel starting slowly turning.
a.) Sketch a graph of this sinusoid.

b.) Write an equation expressing Grover's height above the ground in terms of time (in minutes) since the Ferris wheel started turning.

$$
y=139+125 \cos \frac{\pi}{5}(x-5)
$$

c.) How high was Grover after 16 minutes?

$$
x=16 \quad 240.127 \mathrm{ft}
$$

d.) When was he 200 feet above the ground for the $4^{\text {th }}$ time?

