

Questions, Comments, Concerns?

Algebra I - Unit 9: Topic 1 - Introduction to Quadratic Functions Day 2

Practice - Introduction to Quadratic Functions Day 2

pp 590-611

_____ Date ___

Period _

Graph the following parabolas.

1.
$$f(x) = x^2 - 2x - 3$$

Line of Symmetry: __ Vertex: __

2.
$$y = -(x-3)^2$$

Line of Symmetry: _____

Two Values:

Х	У

Two Values:

Х	У	

Graph:

Find the vertex of the following quadratics.

3.
$$y = 5x^2 - 10x + 3$$
 4. $y = 3x^2 - 1$

4.
$$y = 3x^2 - 1$$

6. For the graph of $f(x) = 4x^2 - 8x + 4$, what is the *x*-coordinate of its vertex?

Algebra I - Unit 9: Topic 1 – Introduction to Quadratic Functions Day 2 Show all of the indicated representations of the function below.

7. $f(x) = x^2 + 4$

TABLE MAPPING		GRAPH	
x y -2 8 -1 5 0 4 1 5 2 8	X 7 4 5 5 1 2 7 8		

8. Which of the following quadratic functions has a maximum?

A
$$2x^2 - y = 3x - 2$$

B
$$y = x^2 + 4x + 16$$

C
$$y - x^2 + 6 = 9x$$

$$\frac{x_{+3}x^{2}=9}{-3x^{2}\cdot 3x^{2}}$$

9. Which of the following mappings best represents the function $f(x) = -x^2 + 3$?

- O NO WORK NO CREDIT NO KIDDING!!

Algebra I - Unit 9: Topic 1 - Introduction to Quadratic Functions Day 3

Practice – Introduction to Quadratic Functions Day 3

pp 590-605

Tell whether each function is linear, quadratic, or neither.

1.
$$-3x^2 + x = y - 11$$

х	-2	-1	0	1	2
у	-4	0	4	8	12

4.
$$y = -3x + 20$$

5.

Х	У
-4	8
-2	2
0	0
2	2
4	8

- 6. A function is described by the equation $f(x) = x^2 3$. The replacement set for the independent variable is {-4, -1, 2, 4}. Which of the following is contained in the corresponding set for the dependent variable?

 - B 2

 - C -1 D 13
- 7. Given the function $f(x) = 3x^2 5$, what is the value of f(-2)?
- 8. A quadratic function is given below. What is f(4)?

$$f(x) = -x^2 + 3x - 2$$

Algebra I - Unit 9: Topic 1 - Introduction to Quadratic Functions Day 3

9. Mark punted a football. The graph below represents the height, h of the football at time, t.

- A. Find f(1). _____
- B. Find f(7).
- C. After how many seconds was the ball at its maximum height?
- D. What was the maximum height of the ball? ___
- E. Fill in the table with four points that lie on the graph.

х		
у		

- F. Calculate the quadratic equation.

 (Round each part of the equation to the nearest tenth.)
- Calculate the curve of best fit represented by the data in the table below. (Round each part of the equation to the nearest tenth.)

X	у
-8	-370
-3	-66
-1	-18
4	79
6	-175

HW Help: Quadratics Day 3

NO WORK = NO CREDIT = NO KIDDING!

Need extra help or a calculator? Come to tutorials!

#1-5, JUSTIFY! Draw a picture of the graph, plot points on a sketch, show me the repeated y-value.

#6. Independent variable = x. Look at your table for the corresponding y-values of the listed set.

#7 & 8. Plug in each x-value. Be careful of your parenthesis!

#9. f(x)=y. Make sure you look at the appropriate value! x = 0 1 4 7

x 0 1 4 7 **y** 0 6 9 6

#10. Use STAT (5:QuadReg) since it says CURVE! Round to the first decimal place.