

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Algebra I - Unit 8: Topic 3 - Solving Quadratics Using the Quadratic Formula Practice - Solving Quadratics Using the Quadratic Formula Name \qquad Date \qquad Period \qquad
Find the number of solutions for each equation using the discriminant. Show your work or draw the corresponding picture. TWO, ONE, NONE

1. $2 x^{2}-x=21$
2. $5 x^{2}+12 x+8=0$
3. $x^{2}+25=10 x$
4. $4=-16 x^{2}+12 x$

Solve the equations below using the Quadratic Formula. Simplify radical answers, if necessary.
5. $4 x^{2}+7 x=15$
6. $10 x^{2}-3 x-1=0$

Algebra I - Unit 8: Topic 3 - Solving Quadratics Using the Quadratic Formula Solve the equations below using the Quadratic Formula. Simplify radical answers, if necessary.
7. $-z^{2}+z=-14$
8. $8 h^{2}+8=6-9 h$
9. Which equation has solutions, rounded to the nearest tenth, of -2.1 and 2.4 ?
A. $3 x^{2}-x-15=0$
B. $2 x^{2}-x-15=0$
C. $3 x^{2}-4 x+2=0$
D. $2 x^{2}-4 x+2=0$
10. For the period 1990-2000, the amount of money, y (in billions of dollars) spent on advertising in the U.S. can be modeled by the function $y=0.93 x^{2}+2.2 x+130$, where x is the number of years since 1990. In what year was 164 billion dollars spent on advertising?

