

Questions comments concerns

Algebra I - Unit 9: Topic 3 - Solving Quadratics Using the Quadratic Formula Practice - Solving Quadratics Using the Quadratic Formula Name \qquad Date \qquad Period pp 652-659

Find the number of solutions for each equation using the discriminant. Show your work or draw the corresponding picture.

1. $2 x^{2}-x=21$
2. $5 x^{2}+12 x+8=0$
3. $x^{2}+25=10 x$
4. $4=-16 x^{2}+12 x$

Solve the equations below using the Quadratic Formula. Round solutions to the nearest hundredth, if necessary.
5. $4 x^{2}+7 x=15$

Algebra I - Unit 9: Topic 3 - Solving Quadratics Using the Quadratic Formula
Solve the equations below using the Quadratic Formula. Round solutions to the nearest hundredth, if necessary.
7. $-z^{2}+z=-14$
8. $8 h^{2}+8=6-9 h$

10. For the period 1990-2000, the amount of money, y (in billions of dollars) spent on advertising in the U.S. can be modeled by the function $y=0.93 x^{2}+2.2 x+130$, where x is the number of years since 1990. In what year was 164 billion dollars spent on advertising?

$$
\begin{aligned}
& 164=0.93 x^{2}+2.2 x+130 \\
& -164
\end{aligned}
$$

$$
0=0.93 x^{2}+2.2 x-34
$$

$$
\begin{aligned}
a & =.93 \quad b=2.2 \quad c=-34 \\
b^{2}-4 a c & \Rightarrow(2.2)^{2}-4(.93)(-34)=131.32 \\
x & =\frac{-2.2 \pm \sqrt{131.32}}{2(.93}=5
\end{aligned}
$$

Algebra I - Unit 9: Topic 3 - Solving Quadratics by Graphing
\qquad Date \qquad Period \qquad
Complete the table including the solution(s) of the quadratic. Then graph the quadratic equation.

1. $x^{2}+7 x+10=0$

\boldsymbol{x}					
\boldsymbol{y}					

2. $x^{2}+5 x=-6$

\boldsymbol{x}					
\boldsymbol{y}					

3. A baseball coach uses a pitching machine to simulate pop flies during practice. The baseball is shot out of the pitching machine with a velocity of 80 feet per second. The quadratic function $y=-16 x^{2}+80 x+4$, shown below, models the height of the baseball after x seconds.

A. Approximately, how long does the baseball stay in the air?
B. What is the maximum height that the baseball reaches?

Algebra I - Unit 9: Topic 3 - Solving Quadratics by Graphing
Complete the information requested for each quadratic equation.
4. $x^{2}+5 x=6$
5. $x^{2}-18=7 x$
6. $5 x^{2}+25 x=0$

Solution(s): \qquad Root(s): \qquad x-intercepts(s): \qquad
Max/Min:
Max/Min: \qquad Max/Min: \qquad
9. $9 x=-x^{2}-18$
7. $-x^{2}-10 x=25$
8. $x^{2}+3=0$

Root(s): \qquad x-intercepts(s): \qquad Zeros:
Vertex: \qquad Vertex: \qquad Vertex: \qquad
10. Part of the graph of a quadratic equation is shown below. If the line of symmetry for this quadratic equation is $x=-1.25$, between which two integers will the other part of the graph intersect the x-axis?

11. If a goalie kicks a soccer ball with an upward velocity of 65 feet per second and his foot meets the ball 3 feet off the ground, the function $y=-16 t^{2}+65 t+3$ represents the height of the ball y in feet after t seconds. Graph the function on the grid below.

12. Approximately how long is the ball in the air?

