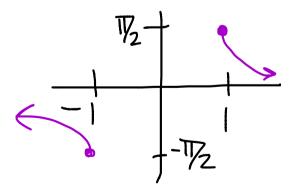
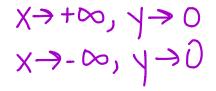
3.1 The rest of the inverse trig functions		Name: KC	
Remember csc is the reciprocal of _	sine	Sec is the reciprocal o	f cosine.

<u>Part 1.</u> If the restricted range of the inverse sine function is $\underline{\underline{1222}}$, what is the restricted range of the inverse cosecant function? $\underline{\underline{1222}}$

Fill in the table with the appropriate cosecant values


Х	Csc(x)
$-\frac{\pi}{2}$	-
0	undef.
$\frac{\pi}{2}$	

Remember, to find an inverse of a function, switch your x & y values.

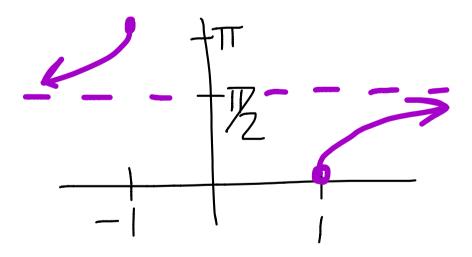

× -	Csc ⁻¹ (x)	X=0, horizontal asymptote
١	%	

If a function value is undefined, what attribute will appear on the graph? HINT: think of the graph of normal cosecant. What happens every π radians? An asymptote.

Sketch the graph of $y = \csc^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

Fill in the table with the appropriate secant values


х	sec(x)
0	
$\frac{\pi}{2}$	V
π	-

Find your inverse critical values and fill in the table below.

Х	sec ⁻¹ (x)
	D
-	Π
HAO	X=152

What happens at $x = \frac{\pi}{2}$? Horizontal Asymptote

Sketch the graph of $y = \sec^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

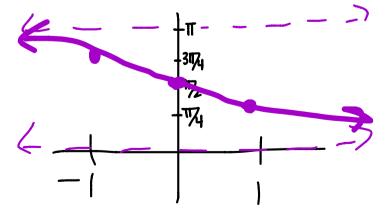
$$\chi \rightarrow +\infty, \gamma \rightarrow \frac{1}{2}$$

 $\chi \rightarrow -\infty, \gamma \rightarrow \frac{1}{2}$

117

<u>Part 3.</u> The restricted range of the inverse cotangent function is $(0,\pi)$. What do the parenthesis tell you will happen at those end points? Asymptotes

Fill in the table with the appropriate cotangent values


Х	cot(x)
0	U
$\frac{\pi}{4}$	I
$\frac{\pi}{2}$	Ò
$\frac{3\pi}{4}$	-1
π	K

Find your inverse critical values and fill in the table below.

Х	cot ⁻¹ (x)
HA@X	
1	74
0	72
-	3177
HAQ	X=∏

What happens at x=0 and x= π ? Horizontal Asymptotes

Sketch the graph of $y = \cot^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

x→+∞, 1→0 x→-∞, 1→∏