4.2 Inverse Parent Functions

Warm-Up Friday

1. Find the inverse of y = 4x + 1

Flip X3.7 Solve for y

2 How would you solve the equation for θ ?

$$\cos \theta = \frac{1}{2}$$

$$\cos \theta = \frac{1}{2}$$

$$\cos \theta = \frac{1}{2}$$

$$\cot \theta = \cos^{-1}(\frac{1}{2})$$
About Me
$$\theta = \cos^{-1}(\frac{1}{2})$$

(TX)=(4)2

- 1. Would you rather be without elbows or be without knees?
- 2. Would you rather never laugh again or never use your smartphone again?

4.2 Inverse Parent Functions

EQ: What are the <u>restricted ranges</u> of each inverse trig function?

Finding an inverse...

switch x3 4, then solve for y

2

EQ: What are the restricted ranges of each inverse trig function?

Inverse Sine

111/61.26 21

$\lambda = 2 \ln \frac{1}{2} (x)$	
X	у
0	O.
	90.
0	IBO.
-1	270
0	300.

fails V.L.T

Restricted Range:

What are the restricted ranges of each inverse trig function? EQ:

SINE Y=COSX

Y=cos-1(x)

Restricted Range:

[0,TT] OY [0', 180']

一些,些	0, 1
sin-1 csc-1	COS - 1 Sec - 1
csc-1	
+011-1	c0+-1
TURNIN	WARM UPS (1)

4.2 The rest of the inverse trig functions...

Name:

Remember... csc is the reciprocal of ____ __. Sec is the reciprocal of ______.

Part 1. If the restricted range of the inverse sine function is ______, what is the restricted range of the inverse cosecant function?

Fill in the table with the appropriate cosecant values

Х	Csc(x)
$-\frac{\pi}{2}$	
0	
$\frac{\pi}{2}$	

Remember, to find an inverse of a function, switch your x & y values.

Х	Csc ⁻¹ (x)

If a function value is undefined, what attribute will appear on the graph? HINT: think of the graph of normal cosecant. What happens every π radians?

Sketch the graph of $y = \csc^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

<u>Part 2.</u> If the restricted range of the inverse cosine function is ______, what is the restricted range of the inverse secant function?

Fill in the table with the appropriate secant values

Χ	sec(x)
0	
π	
2	
π	

Find your inverse critical values and fill in the table below.

Х	sec-1(x)

What happens at $x = \frac{\pi}{2}$?

Sketch the graph of $y = \sec^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

Part 3. The restricted range of the inverse cotangent function is $(0,\pi)$. What do the parenthesis tell you will happen at those end points?

Fill in the table with the appropriate cotangent values

x 0	cot(x)
0	
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	
$\frac{3\pi}{4}$	
π	

Find your inverse critical values and fill in the table below.

Х	cot ⁻¹ (x)

What happens at x=0 and $x=\pi$?

Sketch the graph of $y = \cot^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

Turn in your warmups (write your name!)

Find ONE partner!

Due by the end of the period (12:20)

4.2 Inverse Parent Functions.notebook

November 03, 2017