5.1 Practice - Circles

Name ______ Date _____ Period _____

Graph the following equations and state the domain and range:

1.
$$x^2 + (y-2)^2 = 9$$

Center:

Radius:

Domain:

Range:

2.
$$(x-1)^2 + (y+1)^2 = 4$$

Center:

Radius:

Domain:

Range:

#3-6. Write the equation of the circles.

3. Center (-4, -5), Radius =
$$\sqrt{13}$$

4. Center $\left(\frac{2}{3}, \frac{5}{8}\right)$ and an area of 49π .

6.

7. Both of the equations below represent a circle, in general form. Complete the squares to find the standard form equation and graph each circle.

A.
$$x^2 + y^2 + 6x + 4y + 12 = 0$$

B.
$$4x^2 + 4y^2 - 24x + 32y + 72 = 0$$

8. The face of a one lane tunnel in the figure is a square with a semi-circle above it. The semi-circle can be described by the equation $x^2 + y^2 = 81$. A truck 15 feet wide and 22 feet tall tries to drive through the tunnel. Will it make it? Justify your answer!

- 9. The intersection of a right circular cone and a plane neither perpendicular nor parallel to its axis, nor though the base is a(n) ______.
- 10. Slicing a cone _____ gives a cross section of an ellipse.
 - A. Parallel to its base
 - B. Parallel to its side
 - C. Perpendicular to its base
 - D. None of the above