Practice - Hyperbolas

_____ Date ______ Period_____ Name _____

Write the equation in standard form for each hyperbola.

1.

Find the critical values for each hyperbola and then graph.

3.
$$\frac{x^2}{64} - \frac{y^2}{36} = 1$$

Center _____

Vertices _____

Co-vertices _____

Foci _____

Slopes of Asymptotes _____

Domain _____

Range_____

PAP PreCalculus - Unit 5: Conics

4.	y^2	x^2	- 1
	25	81	- 1

Center _____

Vertices _____

Co-vertices _____

Foci _____

Slopes of Asymptotes _____

Domain _____

Range_____

Domain _____

Range_____

5. $\frac{(y-1)^2}{64} - \frac{(x+2)^2}{36} = 1$

Center _____

Vertices _____

Co-vertices _____

Foci _____

Slopes of Asymptotes _____

Domain _____

Range_____

6. $\frac{(x+5)^2}{25} - \frac{(y-3)^2}{16} = 1$

Center _____

Vertices _____

Co-vertices _____

Foci _____

Slopes of Asymptotes _____

Domain _____

Range_____

- 7. What happens to the graph of $\frac{x^2}{a^2} \frac{y^2}{16} = 1$ as the value of *a* increases? What happens to the graph of $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ as the values of b increase?
- What is the length of the conjugate (minor) axis of the hyperbola with equation $\frac{x^2}{49} \frac{y^2}{121} = 1$?
 - A 7
 - B 11
 - C 14
 - D 22
- 9. Find an equation of a hyperbola with vertices $(0,\pm 2)$ and foci $(0,\pm 4)$.
- 10. The hyperbola is centered at (2, -3) and has a horizontal transverse (major) axis. The distance between the vertices is 14 and the length of the conjugate (minor) axis is 4. Find the equation of the hyperbola.
- 11. Given $-4(y-1)^2 + 9(x-3)^2 = 36$. Write the equation in standard form and sketch a graph.

- 12. Write the equation of the hyperbola centered at the origin with vertex at (6, 0) and asymptotes with equations $y = \pm \frac{2}{3}x$
- 13. What is the slope of one of the asymptotes of the graph of $36 = 9x^2 4y^2$?