\qquad

6.8 The Unit Circle

Find the exact value:

1. $\tan \frac{3 \pi}{2}$
2. $\cos \pi$
3. $\sin \left(-\frac{\pi}{2}\right)$
4. $\sec \frac{3 \pi}{2}$
5. $\csc \frac{\pi}{2}$
6. $\cos \frac{5 \pi}{2}$
7. $\tan 4 \pi$
8. $\cot \frac{\pi}{2}$
9. If $\csc \theta>0$, then θ lies in quadrant(s) \qquad
10. If $\csc \theta<0$, and $\sec \theta>0$ then θ lies in quadrant(s) \qquad
11. Which of the following points is not on the unit circle?
A) $(-1,0)$
B) $\left(\frac{1}{2},-\frac{1}{2}\right)$
C) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
12. Which radian value is associated with the coordinates $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
13. In the accompanying diagram of a unit circle, the ordered pair (x, y) represents the locus of points for the circle. Which ordered pair is equivalent to (x, y) ?
a) $(\sin \theta, \cos \theta)$
b) $(\cot \theta, \tan \theta)$
c) $(\tan \theta, \cot \theta)$
d) $(\cos \theta, \sin \theta)$

14. Find 2 negative and 3 positive angles, expressed in radians, for which the point on the unit circle corresponds to each angle is:
$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
15. In the accompanying diagram, circle O is a unit circle. What function is represented by the length of segment OQ ?

a) $\cos \theta$
b) $\sin \theta$
c) $-\cos \theta$
d) $-\sin \theta$
16. In the diagram of circle $\mathrm{O} \overline{O A}=1$ and $m \angle B O A=30^{\circ}$. What are the coordinates of B ?
a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
b) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
c) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
d) $\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$

17. In the figure $\overline{O P}=1$. What are the coordinates of point P ?
a) $(\sin \theta, \cos \theta)$
b) $(-\sin \theta,-\cos \theta)$
c) $(\cos \theta, \sin \theta)$
d) $(-\cos \theta,-\sin \theta)$

18. In the diagram, the ordered pair (x, y) represents the point where the terminal side of θ intersects the unit circle. If $m \angle \theta=120^{\circ}$, what is the value of x in simplest form?
a) $-\frac{\sqrt{3}}{2}$
b) $\frac{\sqrt{3}}{2}$
c) $-\frac{1}{2}$
d) $\frac{1}{2}$

