6.8 The Unit Circle

Find the exact value:

1.
$$\tan \frac{3\pi}{2}$$

2.
$$\cos \pi$$

3.
$$\sin\left(-\frac{\pi}{2}\right)$$

$$4. \frac{\sec \frac{3\pi}{2}}{2}$$

5.
$$\csc \frac{\pi}{2}$$

6.
$$\cos \frac{5\pi}{2}$$

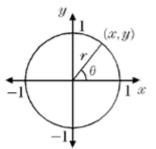
7.
$$\tan 4\pi$$

8.
$$\cot \frac{\pi}{2}$$

9. If
$$\csc\theta > 0$$
, then θ lies in quadrant(s)_____

10. If
$$\csc\theta < 0$$
, and $\sec\theta > 0$ then θ lies in quadrant(s)_____

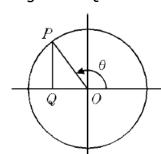
11. Which of the following points is not on the unit circle?


$$\mathsf{B)}\left(\frac{1}{2}, -\frac{1}{2}\right)$$

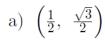
C)
$$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

12. Which radian value is associated with the coordinates
$$\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$$

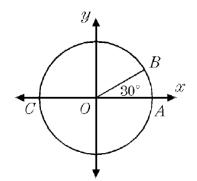
13. In the accompanying diagram of a unit circle, the ordered pair (x,y) represents the locus of points for the circle. Which ordered pair is equivalent to (x,y)?


- a) $(\sin \theta, \cos \theta)$
- b) $(\cot \theta, \tan \theta)$
- c) $(\tan \theta, \cot \theta)$
- d) $(\cos \theta, \sin \theta)$

14. Find 2 negative and 3 positive angles, expressed in radians, for which the point on the unit circle corresponds to each angle is:

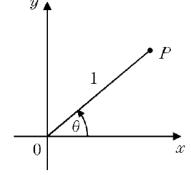

$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

15. In the accompanying diagram, circle O is a unit circle. What function is represented by the length of segment OQ?

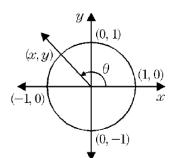


- a) $\cos \theta$
- b) $\sin \theta$
- c) $-\cos\theta$
- d) $-\sin\theta$

16. In the diagram of circle O $\overline{OA} = 1$ and $m \angle BOA = 30^{\circ}$. What are the coordinates of B?



- b) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
- c) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
- d) $\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$


17. In the figure $\overline{OP} = 1$. What are the coordinates of point P?

- a) $(\sin \theta, \cos \theta)$
- b) $(-\sin\theta, -\cos\theta)$
- c) $(\cos \theta, \sin \theta)$
- d) $(-\cos\theta, -\sin\theta)$

18. In the diagram, the ordered pair (x,y) represents the point where the terminal side of θ intersects the unit circle. If $m \angle \theta = 120^{\circ}$, what is the value of x in simplest form?

- a) $-\frac{\sqrt{3}}{2}$ b) $\frac{\sqrt{3}}{2}$ c) $-\frac{1}{2}$ d) $\frac{1}{2}$

