Unit 6 Review Law of Sines and Cosines

Round side lengths and area to the nearest tenth and angle measures to the nearest degree for all questions. Find **all** possible solutions

	<i>a</i> = 8		a = 6
1. Given:	<i>b</i> = 5	3. Given:	b = 10
	$m \angle C = 32^{\circ}$		$m \angle A = 20^{\circ}$

Find: *length of side c*

Find: *length of side c*

	<i>x</i> = 3		<i>p</i> = 17	
2. Given:	<i>y</i> = 6	4. Given:	$m \angle Q = 51^{\circ}$	
	z = 4		$m \angle R = 87^{\circ}$	
Find: $m \angle Z$		Find: <i>length of side r</i>		

Solve $\triangle ABC$. Find ALL solutions									
	<i>a</i> = 12		a = 10		<i>a</i> = 5				
5. Given:	<i>b</i> = 14	6. Given:	$m \angle A = 89^{\circ}$	7. Given:	<i>b</i> = 7				
	$m \angle A = 24^{\circ}$		$m \angle B = 38^{\circ}$		$m \angle A = 126^{\circ}$				

11. In \triangle ABC, side *a* is twice as long as *b* and m<C = 30. In terms of b, the area of \triangle ABC is:

a) $.25b^2$ b) $.5b^2$ c) $.866b^2$ d) b^2

12. If a = 20, c = 16, and m < A = 30, how many distinct triangles can be constructed?

13. In $\triangle ABC$, if AB = 10, BC = 8, and m<A = 45, how many distinct triangles can be constructed?

14. In $\triangle ABC$, if a = 8, b= 5 and c = 9, what is the value of cosA?

15. A pilot of a transoceanic jet flying at an altitude of 12,000 m finds that a stationary ship is in the same vertical plane as the jet's course. He measures the ship's angle of depression to be 14°. Two minutes later he finds it to be 43°.

A. How far did the jet fly in those 2 minutes?

B. At what speed was the jet traveling?

16. An engineer wants to measure the width of a sinkhole. He places a stake at B as shown and measures from the stake to C and D as shown. If the angle at B is 103°, how wide is the sinkhole?

120 ft. 74 ft.

17. Suppose you start at the corner of a room and walk 10 feet at an angle of 70° to the right hand wall. Then you turn 80° clockwise and walk another 7 ft. If you had walked straight from the corner of the room to your stopping point, how far and in what direction would you have walked?

18. The pilot of a commercial airplane finds it necessary to detour around a group of thunderstorms, as shown. He turns the plane at an angle of 21° to his original path, flies 100 km, turns, and then rejoins his original path 170 km from where he left it.

- a) How much further did he have to fly because of the detour?
- b) At what angle did he rejoin his original course?

19. A flagpole 40 feet tall stands on top of the Wentworth Building. From a point in front of the building, the angle of elevation to the top of the pole is 54° , and the angle of elevation to the bottom of the pole is 47° . How high is the building?