

quiz sialistics

averages

2ND - 87

3RD - 84 *4 MISSING

4TH - 79 *3 MISSING

5TH - 89 *5 MISSING

7TH - 75 *7 MISSING

REMEMBER: IF YOU DO BETTER ON YOUR UNIT 10 TEST, I WILL RAISE THE GRADE ON THE QUIZ

ZEROES IN GRADEBOOK = YOU ARE PROBABLY NOT PASSING

UNIT 9 TEST CORRECTIONS DUE THURSDAY 9AM

TUTORING THIS WEEK:

TUES AM/PM

WED AM/PM
THURS AM

Extra credit posters due thursday. Do a crappy job = get a crappy grade.

Part 1: Your Rich Aunt Rhoda

P-123

Imagine that when you were born, your rich Aunt Rhoda wanted to provide for your future. She offered your parents two options:

Option 1

She would give you \$1000 for every birthday until you are sixteen. Option 2

She would give you \$1 for your first birthday and then double the amount you have on your second birthday so that you have \$2. On your third birthday, she would double the amount received at the last birthday. She will continue doubling the amount until you are sixteen.

Which option would you choose? -

Birthday	Process	Total Amount for Option 1
1		1000
2	1000+1000	9000
3	S000+1090	3000
4	30001000	4000
5		5000
6		6000
7		7000
8		8000
9		9000
10		0000
11		1/000
12		12000
13		13000
14		14000
15		(SODO)
16		(6000

Birthday	Process	Total Amount for Option 2
1		×7
2	1(2)	2 x
3	2(2)	4 ×
4	4(2)	8
5	8(2)	16
6	16(2)	32
7	32(2)	4
8		128
9		256
10		512
11		1024
12		2048
13		4096
14		8192
15		16384
16		32768

applications of exponentials

DUE BEFORE YOU LEAVE

WORK INDEPENDENTLY; DO NOT LEAVE BLANKS! YOU MAY USE YOUR NOTES.

EXIT TICKET

Name:

Part II: The Science Experiment

A scientist is conducting an experiment with an antibiotic on a colony of bacteria. The antibiotic he introduces kills 2% of the bacteria colony each hour. The amount of bacteria remaining each hour can be represented by the equation $y = 1,000,000 \cdot (0.98)^x$.

- 1. What does 1,000,000 represent in this equation?
- 2. How was the (0.98) derived for this equation?
- 3. Graph the equation in your graphing calculator. Is this situation a growth or a decay? How do you know?
- 4. How many bacteria will there be left in 8 hours?
- 5. How many bacteria will there be left in 24 hours?
- 6. How long will it be before the scientist will have half the beginning amount of bacteria? _____

copyright@dgreetings.com

Algebra I – Unit 10: Topic 1 – Applications (of Non-Linear, Non-Quadratic Functi	ge ons
Practice – Applications of Non-Linear,	Non-Quadratic Functions	pp 781-788
Name	Date	Pd

- 1. In 2009, a large company decides to build a manufacturing plant in the town of Tiny, Texas with 1400 residents. Due to the increase in jobs available with this company, the population of Tiny, Texas increase 9% each year. This growth is represented by the equation $y = 1400 \cdot (1.09)^{\circ}$
 - A. Approximately when would the population of Tiny, Texas double?
 - B. A new fast food restaurant is considering a franchise in Tiny, Texas. Based on market research, it is a better financial investment when the town has a population of at least 4000. If the growth of Tiny, Texas continues, in what year should the fast food restaurant open in this town?
- 2. The MSRP price of a 2011 Cadillac Escalade is \$63,160. The vehicle depreciates in value by 8% each year. This depreciation is represented by the equation $y = 63160 \cdot (0.92)^{\circ}$.
 - A. What is its value 6 years after it is purchased?
 - B. Will the car ever have a value of zero dollars?
- 3. The population fish in a pond is decreasing at a rate of 1% per year. In 2000, there were 1300 fish in this pond. This decay can be represented by the equation $y = 1300 (0.99)^x$
 - A. What is the population of fish in 2008?
 - B. Between which two years will the population of fish be half of what it was in 2000?
- 4. Annual sales for a small childrens' clothing company are \$149,000 and increase at a rate of 6% per year. This growth is represented by the equation $y = 149,000 \cdot (1.06)^{\circ}$.
 - A. Explain why the base of the exponent 1.06.
 - B. When applying for a small business loan, the company must report a 10 year business model. In ten years, what are their projections for annual sales?
- 5. In 2002, the student enrollment in a local high school was 970 students and increases by 1.2% per year. This growth is represented by the equation $y = 970 \cdot (1.012)^2$.
 - A. When student enrollment reaches 1200, the district must consider plans for building a new high school. When will the district begin making these plans?
 - B. The 1000th student to enroll will receive a free graphing calculator as a prize. In which year is this projected to occur?

quiz sialislics

averages

2ND - 87

3RD - 84 *4 MISSING

4TH - 79 *3 MISSING

5TH - 89 *5 MISSING

7TH - 75 *8 MISSING

REMEMBER: IF YOU DO BETTER ON YOUR UNIT 10 TEST, I WILL RAISE THE GRADE ON THE QUIZ

ZEROES IN GRADEBOOK = YOU ARE PROBABLY NOT PASSING

UNIT 9 TEST CORRECTIONS DUE
THURSDAY 9AM

TUTORING THIS WEEK:
TUES AM/PM
WED AM/PM
THURS AM

Extra credit posters due thursday. Do a crappy job = get a crappy grade.