7.3 Polynomial Behavior Sketching Polynomials (Without a Calculator)

- Positive Leading Coefficient Negative Leading Coefficient Think of _____ Think of _____ Odd degree As $x \rightarrow \infty$, $y \rightarrow _$ As x→∞, y→____ As x→-∞, y→____ As $x \rightarrow -\infty$, $y \rightarrow _$ Think of _____ Think of _____ **Even Degree** As x→∞, y→____ As $x \rightarrow \infty$, $y \rightarrow _$ As $x \rightarrow -\infty$, $y \rightarrow _$ As $x \rightarrow -\infty$, $y \rightarrow _$
- 1. End Behavior The graph's behavior as x approaches $\pm \infty$.

- 2. <u>Y-Intercept</u> Plug in ______ for _____.
 - Easiest to find in ______.
- 3. <u>X-Intercepts</u> POLYNOMIAL NEEDS TO BE IN ______.
 - Set each _____ equal to _____.

4. <u>Multiplicity (behavior at each x-intercept)</u> – depends on the ______ of the factor.

Multiplicity			
1	Even	Odd	

Example

$$y = x(x-3)^3(x-2)^4(x+7)$$

End Behavior:

Y-intercept

X-intercept

Function	Highest Powered Term	Zeros	Graph
$2(x+1)^2(x-3)(x+5)$			