7.4 poly with calc.notebook January 07, 2016

7.4 Polynomials with a Calculator Essential Question

How do I determine characteristics of polynomial graphs using a calculator?

7.4 Polynomials with a Calculator

Essential Question

How do I determine characteristics of polynomial graphs using a calculator?

Local Extrema pt in an area

Max # -> degree -|

(ex) 3x5-3x2+2x

max. of 4 high|lows

in creasing:
$$+ slope$$

 $(-\infty, -3) \cup (-1, 2) \cup (4, \infty)$
decreasing: $- slope$
 $(-3, -1) \cup (2, 4)$

7.4 Polynomials with a Calculator

Essential Question

How do I determine characteristics of polynomial graphs using a calculator?

ex.
$$y = x^4 + x^3 - 6x^2 - 4x + 12$$

in c: (-2,-.319)U (1.569,∞) dec: (-∞,-2)U(-.319,1.569)

Max: (-.319,12-643) Min: (1569,.876) (-2,4)

ex. $y = -x^2 + 3x - 2$ 2000 (2,0)

· 2nd fract 2: zero

· Y2=0 End (TRAGE) Sintersect

4 Polynomials with a Calculator

Essential Question

How do I determine characteristics of polynomial graphs using a calculator?

After the winter break, 3 students came to school sick with the flu. The following table shows the number of students infected with the flu depending on the number of days after the winter break.

ime (days) χ^{l}_{S}	0	5	10		20	25	30
of infected students	3	6	14	23	23		9

rinu a polynomial model of the data. $\sqrt{=.0001}$ χ⁴ -.012 χ³ +.26 χ² -.393χ

Find the day at which the number of infected students will reach the maximum. $+2\sqrt{6}$

When will the number of infected students drop to zero? 20 days