7.3 Functions Day 2

Write an equation for the perpendicular bisector of the line segment determined by each pair of points.

1. (3,-5); (-6,10)

$$y = \frac{5}{3}x + 5$$

2.
$$(-1,3)$$
; $(5,-3)$
 $5lope$
 $\frac{-3-3}{5--1} = \frac{-6}{6} = -1$
 \perp Slope = 1
Midpoint Equation
 $y-0 = 1(x-2)$

Write an equation of the line that is determined by the given conditions.

3. Contains the point (4,-1) and is perpendicular to the line 2x-y=4.

4. Contains the point
$$(-2,4)$$
 and is parallel to the line $x-4y=8$.

$$-4y=-x+8$$

$$y=+x-2$$

$$y=+x-2$$

$$1|5|6|2e+4$$

5. Contains the point (-2,0) and is parallel to the line x=4.

6. Contains the point (0,2) and is perpendicular to the line y=8.

7. Show that the triangle with vertices (-1,2), (-6,-2), and (2,-12) is a right triangle.

10. Use the concept of slope to determine whether the three points (-1,2), (2,4), and (6,9) are collinear, that is, whether they all lie on the same line.

$$\frac{4-2}{2^{-1}} = \frac{2}{3}$$

$$\frac{4-4}{3-1} = \frac{5}{4}$$
No

In questions 11-20, use the functions $f(x) = x^2 - 1$ and $g(x) = \frac{1}{(x+1)}$ to find the following function values.

12.
$$f(1)$$
 $|^2 - | = 0$

13.
$$f(3)$$

14.
$$f(-5)$$
 $(-5)^2 = 24$

$$\frac{16. \ g(1)}{1+1}$$

18.
$$g(-5)$$

19.
$$g\left(\frac{2}{t}\right)$$

$$\frac{2}{t} + 1$$

$$\frac{2+t}{2+t}$$

20.
$$f(x+2)$$
 $(x+2)^{2} - 1$
 $x^{2} + 4x + 4 - 1$
 $x^{2} + 4x + 7$