\qquad
Write an equation for the perpendicular bisector of the line segment determined by each pair of points.

1. $(3,-5) ;(-6,10)$

$$
y=\frac{5}{3} x+5
$$

2. $(-1,3) ;(5,-3)$
slope

$$
\begin{gathered}
\frac{-3-3}{5--1}=\frac{-6}{6}=-1 \\
\perp \text { Slope }=1
\end{gathered}
$$

Equation

$$
y-0=1(x-2)
$$

$$
y=x-2
$$

Write an equation of the line that is determined by the given conditions.
3. Contains the point $(4,-1)$ and is perpendicular to the line $2 x-y=4$.

$$
y=-2 x+7
$$

4. Contains the point $(-2,4)$ and is parallel to the line $x-4 y=8$.

$$
\begin{aligned}
&-4 y=-x+8 \\
& y=\frac{1}{4} x-2 \\
& \text { II slope } \frac{1}{4}
\end{aligned}
$$

5. Contains the point $(-2,0)$ and is parallel to the line $x=4$.

$$
\begin{aligned}
y-4 & =\frac{1}{4}(x+2) \\
y-4 & =\frac{1}{4} x+\frac{1}{2} \\
y & =\frac{1}{4} x+\frac{1}{2}+\frac{8}{2} \\
y & =\frac{1}{4} x+\frac{9}{2}
\end{aligned}
$$

$$
x=-2
$$

6. Contains the point $(0,2)$ and is perpendicular to the line $y=8$.

$$
x=0
$$

7. Show that the triangle with vertices $(-1,2),(-6,-2)$, and $(2,-12)$ is a right triangle.

8. Use the concept of slope to determine whether the three points $(-1,2),(2,4)$, and $(6,9)$ are collinear, that is, whether they all lie on the same line.

$$
\begin{array}{ll}
\frac{2,3 \text { slope }}{2-1}=\frac{2}{3} & \frac{9-4}{6-2}=\frac{5}{4}
\end{array}
$$

In questions 11-20, use the functions $f(x)=x^{2}-1$ and $g(x)=\frac{1}{(x+1)}$ to find the following function values.
11. $f(0)$

$$
-1
$$

12. $f(1)$
$1^{2}-1=0$
13. $f(3)$
14. $g(3)$
$\frac{1}{4}$
15. $g(-5)$

$$
\frac{1}{-s+1}=-\frac{1}{4}
$$

14. $f(-5)$

$$
(-s)^{2}-1=24
$$

15. $g(0)$

$$
\frac{1}{1+1}=\frac{1}{2}
$$

19. $g\left(\frac{2}{t}\right)$

$$
\begin{array}{r}
\frac{1}{\frac{2}{t}+1}=\frac{\frac{1}{2+1}}{\frac{7}{t}}{ }^{\frac{7}{2+t}}
\end{array}
$$

20. $f(x+2)$

$$
\begin{aligned}
& (x+2)^{2}-1 \\
& x^{2}+4 x+4-1 \\
& x^{2}+4 x+3
\end{aligned}
$$

