
8.2 POLYNOMIAL OPERATIONS

Turn in the entire 8.1 HW (all 44 questions with work shown) right now!!!

Warm-UP Friday (in Your notes)

<u>Without a calculator</u>, find the quotient and remainder of the following problem.

$$8954762 \div 23$$

8.2 POLYNOMICL OPERCTIONS

[Q] How do I determine the degree of a polynomial?

A **term** is an algebraic expression that can be written using constants, variables, multiplication and division.

The constants are called <u>Coefficients</u>. A **polynomial** can be written using terms and addition and subtraction. The term of the polynomial which does not include a variable is called the <u>Constant term</u>. Any letter may be used as the variable in a polynomial.

Note the characteristics of a polynomial.

- All exponents are whole numbers.
- No variables in the denominator.
- No variables under a radical.

Any letter may be used as the variable in a polynomial. Examples of polynomials include the following.

$$x^{3} - 6x^{2} + \frac{1}{2}$$
 $y^{15} + y^{10} + 7$ $w - 6.7$ 12

8.2 POLYNOMICL OPERCITORS

EQ How do I determine the degree of a polynomial?

Degree of a Polynomial – The *exponent* of the highest power of x is the degree of the polynomial, and the coefficient of this highest power of the variable is the leading coefficient.

Folled > biggest exponent bigh			
Polynomial	Degree elo .	Leading Coefficient	Constant Term
$6x^{7} + 4x^{3} + 5x^{2} - 7x + 10$	7	6	10
x^3	3		0
12 X	0	12 :	12
$2x^6 + 3x^7 - 2x - 4$	8	-1	-4
(X-3)2(X+2)XX-7	2+1+3= 13 (0	1	(-3) ² (2) (-7) ³

FACTOREd -> add exponents

8.2 POLYNOMICL OPERCITIONS

[Q] How do I determine the degree of a polynomial?

Polynomial functions of degree less that 5 are often referred to by special names.

- First-degree polynomial functions are called _____ functions.
- Third- degree polynomial functions are called _____ CUDIC ____ functions.
- Fourth- degree polynomial functions are called ______ **CUCITE functions.**

8.2 POLYNOMICL OPERCITIONS

EQ How do I determine the degree of a polynomial?

Adding and Subtracting Polynomials To add or subtract polynomials, combine like terms

ex.
$$(-2x^3 + x^2 - 4x)$$
 $(-2x^3 - x + 4)$

$$-2x^3+x^2-4x$$
 $-2x^3+x-4$

$$-4x^3 + x^2 - 3x - 4$$

8.2 POLYNOMICL OPERCITIONS

EQ How do I determine the degree of a polynomial?

Multiplying Polynomials To multiply polynomials, ______distribute/FOIL

ex.
$$(2x-3)(x^2+3x-5)$$

$$\frac{2x^{3} + 6x^{2} - 10x - 3x^{2} - 9x + 15}{2x^{3} + 3x^{2} - 19x + 15}$$

Synthetic basics

- I. Bring down 1st #
- 2. Multiply
- 3. Add down column
- 4. Repeat for each column
- 5. Answer is one degree less

Don't forget the zeros for missing terms!

Long DIVISION
$$(x^{4} + 3x^{3} - 2x^{2} + x - 3) - (x^{2} + x - 2)$$

$$x^{2} + x - 2 \qquad x^{4} + 3x^{3} - 2x^{2} + x - 3$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} - 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-(x^{4} + 3x^{3} + 2x^{2} + x - 3)$$

$$-($$

8.2 POLYNOMICL OPERCTIONS

EQ How do I determine the degree of a polynomial?

EXIT TICKET

on google classroom

8.2 -Operations with Polynomials

In Exercises 1-8 determine whether the given algebraic expression is a polynomial. If it is, list its leading coefficient, constant term, and degree.

1. $1+x^3$

- 2. $7^x + 2x + 1$
- 3. $(x+\sqrt{3})(x-\sqrt{3})$

- **4.** $4x^2 + 3\sqrt{x} + 5$ **5.** $\frac{7}{x^2} + \frac{5}{x} 15$ **6.** $(x-1)^k$

where k is a fixed, positive integer

In Exercises 7 – 14 perform the indicated operations

7. $(m^2+3)-(4-3m)$

8. $(2x^2-4x+7)-(-2x^2+3x-7)$

- **9.** $5a^4(a^2-4a+3)$ **10.** $(x+2)(x^2-4x+5)$

11. $(7x-3)^2$

12. $(5-2x)^2$

- **13.** $(2x+5)(2x-5)-(2x+5)^2$ **14.** $(x+3)^2+(x-3)^2$

In Exercises 15 – 19, use synthetic division to find the quotient and remainder.

15.
$$(3x^4 - 8x^3 + 9x + 5) \div (x - 2)$$
 16. $(4x^3 - 3x^2 + x + 7) \div (x - 2)$

16.
$$(4x^3 - 3x^2 + x + 7) \div (x - 2)$$

17.
$$(3x^3 - 2x^2 - 8) \div (x + 5)$$

17.
$$(3x^3 - 2x^2 - 8) \div (x + 5)$$
 18. $(2x^4 + 5x^3 - 2x - 8) \div (x + 3)$

19.
$$(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) \div (x - 1)$$

In Exercises 20 – 22, state the quotient and remainder when the first polynomial is divided by the second using long division. Check your division by calculating: (Divisor)(Quotient) + Remainder.

20.
$$3x^4 + 2x^2 - 6x + 1$$
; $x + 1$

21.
$$3x^4 - 3x^3 - 11x^2 + 6x - 1$$
; $x^3 + x^2 - 2$

22.
$$x^5 - 1$$
; $x - 1$

8.2 POLYNOMIAL OPERATIONS

EQ How do I determine the degree of a polynomial?

Dividing Polynomials

Ex.
$$(3x^4 - 8x^2 - 11x + 1) \div (x - 2)$$

Synthetic Division

Only works when divisor is first degree binomial

Synthetic basics

- I. Bring down 1st #
- 2. Multiply
- 3. Add down column
- 4. Repeat for each column
- 5. Answer is one degree less

Don't forget the zeros for missing terms!

Long Division

to check your answer...

answer * divisor + remainder = original