8.4	The	rest	of the	inverse	tria	functions
U. T	1110	1636	OI LIIC	HILACISC	uig	I di l'Ctions

Remember... csc is the reciprocal of ______. Sec is the reciprocal of ______.

Part 1. If the restricted range of the inverse sine function is ______, what is the restricted range of the inverse cosecant function?

Fill in the table with the appropriate cosecant values

Χ	Csc(x)
π	
$\frac{-}{2}$	
0	
π	
$\frac{\overline{2}}{2}$	

Remember, to find an inverse of a function, switch your x & y values.

Χ	Csc ⁻¹ (x)

If a function value is undefined, what attribute will appear on the graph? HINT: think of the graph of normal cosecant. What happens every π radians?

Sketch the graph of $y = \csc^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

<u>Part 2.</u> If the restricted range of the inverse cosine function is ______, what is the restricted range of the inverse secant function?

Fill in the table with the appropriate secant values

Χ	sec(x)
0	
π	
$\frac{}{2}$	
π	

Find your inverse critical values and fill in the table below.

Χ	sec ⁻¹ (x)

What happens at $x = \frac{\pi}{2}$?

Sketch the graph of $y = \sec^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

<u>Part 3.</u> The restricted range of the inverse cotangent function is $(0, \pi)$. What do the parenthesis tell you will happen at those end points?

Fill in the table with the appropriate cotangent values

Χ	cot(x)
0	
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	
$\frac{3\pi}{4}$	
π	

Find your inverse critical values and fill in the table below.

Х	cot ⁻¹ (x)

What happens at x=0 and $x=\pi$?

Sketch the graph of $y = \cot^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?