8.4 The rest of the inverse trig functions...

Name: \qquad
Remember... csc is the reciprocal of \qquad . Sec is the reciprocal of \qquad .

Part 1. If the restricted range of the inverse sine function is \qquad , what is the restricted range of the inverse cosecant function?

Fill in the table with the appropriate cosecant values

x	$\operatorname{Csc}(x)$
$-\frac{\pi}{2}$	
0	
$\frac{\pi}{2}$	

Remember, to find an inverse of a function, switch your $x \& y$ values.

If a function value is undefined, what attribute will appear on the graph? HINT: think of the graph of normal cosecant. What happens every π radians?

Sketch the graph of $y=\csc ^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

Part 2. If the restricted range of the inverse cosine function is \qquad , what is the restricted range of the inverse secant function?

Fill in the table with the appropriate secant values

x	$\sec (x)$
0	
$\frac{\pi}{2}$	
π	

Find your inverse critical values and fill in the table below.

x	$\sec ^{-1}(x)$

What happens at $x=\frac{\pi}{2}$?

Sketch the graph of $y=\sec ^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

Part 3. The restricted range of the inverse cotangent function is $(0, \pi)$. What do the parenthesis tell you will happen at those end points?

Fill in the table with the appropriate cotangent values

x	$\cot (x)$
0	
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	
$\frac{3 \pi}{4}$	
π	

Find your inverse critical values and fill in the table below.

x	$\cot ^{-1}(x)$

What happens at $\mathrm{x}=0$ and $\mathrm{x}=\pi$?
Sketch the graph of $y=\cot ^{-1}(x)$ below. Label each critical point and any horizontal asymptotes.

What value does the function approach as x approaches positive infinity? What value does the function approach as x approaches negative infinity?

