Warm-Up Thursday

Find all asymptotes and any removable discontinuities of $f(x) = \frac{x+6}{x^2+3x-18}$

$$f(x) = \frac{x^{2} + 3x - 16}{(x - 3)(x + 6)}$$

$$RD: x + 6 = 0$$

$$x = -6$$

$$VA: x = 3$$

HA: Y=0

About Me

- 1. Who is your hero? Why?
- 2. Would you rather be kept away from your friends for 6 months or the internet for 2 years?

9.2 Graphing Rational Functions Day 2 (Holes)

Name

Find the domain, vertical or horizontal asymptotes, removable discontinuities, and graph the function with their asymptotes.

1.
$$f(x) = \frac{x-3}{x^2 - x - 20}$$

$$f(x) = \frac{x^2 - 9}{x - 3}$$

1-194: (01+3/20)

4.
$$f(x) = \frac{(x-2)(x+4)}{(x+8)(x-2)}$$

5.
$$f(x) = \frac{x-4}{x^2 + 2x - 24}$$

5.
$$f(x) = \frac{x-4}{x^2 + 2x - 24}$$
 6. $f(x) = \frac{2x^2 + 5x - 3}{x^2 + x - 20}$ 7. $f(x) = \frac{x^2 + 2x - 3}{x^2 + 6x + 9}$

7.
$$f(x) = \frac{x^2 + 2x - 3}{x^2 + 6x + 9}$$

EQ: How do I find slant asymptotes?

A Slant Asymptote (<u>oblique asymptote</u>) occurs on the graph of a rational function when... there is no HA (<u>high</u>) AND the degree of

top is exactly one bigger

Steps to find SA:

1. Find HA

(degree of top over degree of bottom)

- 2. high over low and exactly one degree higher on top
- **3.** Use long division or synthetic division
- **4.** Remainder doesn't matter!

EQ: How do I find slant asymptotes?

Graph each rational function and list all asymptotes.

EX1. $\frac{x^2 - 4x - 5}{x - 3} = \frac{(x - 5)(x + 1)}{x - 3}$ VA: x = 3Synthetic

HA: None $\frac{1}{x} = \frac{1}{x} = \frac{$

Steps to find SA:

1. Find HA

(degree of top over degree of bottom)

- 2. high over low and exactly one degree higher on top
- 3. Use long division or synthetic division
- **4.** Remainder doesn't matter!

EQ: How do I find slant asymptotes?

EX2. Find all asymptotes of
$$f(x) = \frac{2x^3 - 2x^2}{x^2 - x - 30}$$

$$f(x) = \frac{2x^2(x - 1)}{(x - 6)(x + 5)}$$

$$VA \cdot x = -5$$

$$X = 6$$

$$f(x) = \frac{2x^2(x-1)}{(x-6)(x+5)}$$

Steps to find SA:

1. Find HA

(degree of top over degree of bottom)

- 2. high over low and exactly one degree higher on top
- 3. Use long division or synthetic division
- 4. Remainder doesn't matter!

EQ: How do I find slant asymptotes?

EX3.

Use the graph to determine:

as
$$x \to -1^+$$
, $f(x) \to \underline{\hspace{1cm}}$

Right as
$$x \to -1$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to +1^+$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to +1^-$$
, $f(x) \to \underline{\hspace{1cm}}$

(end behavior) as
$$x \to \infty$$
, $f(x) \to 0$
as $x \to -\infty$, $f(x) \to 0$

as
$$x \to -\infty$$
, $f(x) \to \underline{\mathsf{D}}$

EQ: How do I find slant asymptotes?

Exit Ticket

on google classroom

HW Calendar (4 stamps)

due tomorrow end of class

9.3 Graphing Rational Functions (Slant Asymptotes)

Use algebra to determine the location of the vertical asymptotes, horizontal asymptotes / slant asymptotes and any holes in the graph of the function. Then sketch the graph.

1.
$$f(x) = \frac{x+1}{3x^2 + x - 2}$$

1.
$$f(x) = \frac{x+1}{3x^2 + x - 2}$$
 2. $f(x) = \frac{x^2 - 2x - 8}{x+3}$

3.
$$f(x) = \frac{x^2 + 3x - 4}{x - 2}$$
 4. $f(x) = \frac{x + 6}{x^2 + 3x - 18}$

4.
$$f(x) = \frac{x+6}{x^2+3x-18}$$

5.
$$f(x) = \frac{x^2 - x - 20}{x - 5}$$
 6. $f(x) = \frac{x^3 + 27}{x^2 - 9}$

$$f(x) = \frac{x^3 + 27}{x^2 - 9}$$

11. Use the graph to determine:

as
$$x \to -2^+$$
, $f(x) \to$

as
$$x \to -2^-$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to 3^+$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to 3^-$$
, $f(x) \to$ _____

as
$$x \to \infty$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to -\infty$$
, $f(x) \to \underline{\hspace{1cm}}$

12. Use the graph to determine:

as
$$x \to -1^+$$
, $f(x) \to$

as
$$x \to -1^-$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to 2^+$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to 2^-$$
, $f(x) \to \underline{\hspace{1cm}}$

as
$$x \to \infty$$
, $f(x) \to$

as
$$x \to -\infty$$
, $f(x) \to \underline{\hspace{1cm}}$

For #13-14, Write the equation of the function with the given characteristics.

13. hole at x = -5

VA at
$$x = 2$$
 and $x = -4$

x-intercepts at
$$x = -6$$
 and $x = 3$

HA at
$$y=3$$

14. VA at x = 1 and x = 3

only x-intercepts are
$$x = 2$$
 and $x = 5$

9.3 Slant Asymptotes.notebook

March 22, 2018