CBA 1 Review

1. List the domain and range of each of the following parent functions.

$$1. f(x) = \sqrt{x}$$

$$II. \qquad f(x) = x^3$$

III.
$$f(x) = \log x$$

$$IV. \qquad f(x) = 2^x$$

2. The graph of f(x) is shown below. What is the range of $f^{-1}(x)$ and how does it compare to the domain of f(x) ?

3. Sketch the graph of a function, $f(x) = x^{\frac{1}{n}}$, where n is a positive even integer.

4. The functions k(x), f(x), g(x), and h(x) are shown below.

$$k(x) = x - 5$$

$$f(x) = x + 5$$

$$g(x) = x^2 - 8$$

$$f(x) = x+5$$
 $g(x) = x^2 - 8$ $h(x) = \sqrt{x+8}$

Which pair of functions represents a commutative relationship?

A.
$$g(h(x))$$
 and $h(g(x))$

B.
$$f(g(x))$$
 and $g(f(x))$

C.
$$k(f(x))$$
 and $f(k(x))$

D.
$$f(h(x))$$
 and $h(f(x))$

- 5. Circle ALL of the true statements below.
 - I. y = x is an odd function because it is symmetric about the y-axis.
 - II. $y = x^2$ is an odd function because it is symmetric about the origin.
 - III. $y = x^3$ is an odd function because it is symmetric about the origin.
 - IV. y = |x| is an even function because it is symmetric about the y-axis.
- 6. The graph of a rational function is shown below. Circle all of the key attributes that correctly describe the rational function.

- I. The function is increasing in the interval $(3, \infty)$.
- II. The function is decreasing on the interval $(-\infty, -6) \cup (-6, 3) \cup (3, \infty)$.
 - The function has vertical asymptotes at x = -6 and x = 3.
 - The function has a horizontal asymptote at y = 1.

7. Graph the following piecewise function.

$$f(x) = \begin{cases} 2x+1, & x < 2 \\ -x+4, & x \ge 3 \end{cases}$$

8. The graph of a step function is shown below. Circle the key attributes that describe the function.

- I. The function is symmetric to the y-axis.
- II. The function is symmetric to the origin.
- III. The function is decreasing.
- IV. The function is increasing.
- V. The domain of the function is $\{x: x \in \Re\}$.
- VI. The range of the function is $\{y: y \in \mathfrak{R}\}$.
- 9. The cost of the salt used to fill up the salt shakers on the tables in a restaurant is given by the function f(x) = 8x 2, where x represents the number of quarts of salt used and f(x) represents the cost. If f(5a) = 90, what is the value of a?
- 10. Find the end behavior for each of the graphs.

As
$$x \to \infty$$
, $y \to$ _____

As
$$x \to -\infty$$
, $y \to$

As
$$x \to \infty, y \to$$

As
$$x \to -\infty$$
, $y \to$ _____

11. Find an x-value where the following function is discontinuous.

$$f(x) = \frac{3x^2 - 2x - 5}{x + 6}$$

12. Describe the following behavior.

- Right side behavior as $x \rightarrow -2$, $f(x) \rightarrow \underline{\hspace{1cm}}$
- Left side behavior as $x \rightarrow -2$, $f(x) \rightarrow$ _____

13. Given the function $g(x) = (2x+1)^2 - 4$ and g(x) = f(h(x)), which pair of functions could represent f(x) and h(x)?

I.
$$f(x) = x-4$$
 and $h(x) = (2x+1)^2$

II.
$$f(x) = x^2 - 4$$
 and $h(x) = 2x + 1$

III.
$$f(x) = x - 4$$
 and $h(x) = x^2 - 4$

14. Given the function, f(x), shown below, determine the algebraic representation for $f^{-1}(x)$, and any domain restrictions applicable on f(x), when determining an inverse function.

$$f(x) = \underline{\hspace{1cm}}$$

$$f^{-1}(x) = \underline{\hspace{1cm}}$$

Domain Restriction on f(x)