By Factoring By Square Roots

By Qaciratic Formia

Steps to solve by square Roots: OPPOSITE of SQUARE $=\sqrt{S Q \cdot R O O T}$.

1. Get the squared term alone.
2. Take the square root of both

$$
\text { sides (End } \left.\left.\mathrm{x}^{2}\right]\right)
$$

$$
\text { 1. } \begin{gathered}
\frac{2(x-10)^{2}}{2}=\frac{200}{2} \\
\sqrt{(x-10)^{2}}=\sqrt{100} \\
x-10= \pm 10 \\
+10 \\
x=10 \pm 10
\end{gathered}
$$

3. Don't forget the \pm !
4. Finish solving (if necessary)
5. You should have Two answers

$$
\{20,0\}
$$

| USe t\} is method. When there is ONLY a squared term!
2. $\sqrt{x^{2}}=\sqrt{225}$
3.

$$
x= \pm 15
$$

$$
\{-15,15\}
$$

5. x^{2}

$$
\begin{array}{cc}
2+5=5 & \text { 6. } \frac{4(x+2)^{2}}{4}=\frac{324}{4} \\
-5-5 & \sqrt{(x+2)^{2}}=\sqrt{81} \\
\sqrt{x^{2}}=\sqrt{0} & x+2= \pm 9 \\
x=0 & -2=-2 \\
x=-2 \pm 9 \\
& \\
& \{-11,7\}
\end{array}
$$

5. x
6. A zookeeper is buying fencing to enclose a pen at the zoo. The pen is an isosceles right triangle. There is already a fence on the side that borders a path. The area of the pen will be 4500 square feet. The zookeeper can buy the fencing in whole feet only. How many feet of fencing should he buy?

By Quadratic

$$
\begin{aligned}
& A_{\Delta}=\frac{1}{2} b h \\
& \sqrt{9000}=\sqrt{x^{2}} \\
& 4500=\frac{1}{2} x \cdot x \\
& 94.87=x \\
& \begin{array}{l}
\text { No negative } \\
\text { lengths. }
\end{array} \\
& 2 \cdot 4500=\frac{1}{2} x^{2} \cdot 2 \\
& 2 \text { SIDES need fencing } \\
& 2(94.87)=189.74 \\
& 190 \text { feet } \\
& \text { By Square Roots. }
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2}-25=0 \\
& \text { +25 +25 } \\
& \text { 4. } x^{2}+100=0 \\
& \frac{4 x^{2}}{4}=\frac{25}{4} \\
& \sqrt{-100} \sqrt{x^{2}}=\frac{-100}{-100} \\
& \text { ERROR } \\
& \sqrt{x^{2}}=\sqrt{\frac{25}{4}} x= \pm \frac{5}{2} \\
& \text { NOSOLUTION } \\
& \sqrt{(x+2)^{2}}=\sqrt{81} \\
& x+2= \pm 9 \\
& \begin{array}{c}
-2 \\
x=-2 \pm 9
\end{array} \\
& \{-11,7\} \\
& \text { 7. } 0=-2 x^{2}+80 \\
& -80 \\
& \frac{-80}{-2}=\frac{-2 x^{2}}{-2} \\
& \sqrt{40}=\sqrt{x^{2}} \\
& \pm 6.32=x \\
& \text { Round to } 2 \text { decimals }
\end{aligned}
$$

Quadratic Formula: ALWAYS WORKS

$$
\left\{x=\frac{-b \pm \sqrt{b^{2}-4 a C}}{2 a}\right\}
$$

germinant under square root tells how many solutions (orusepic) ONE, TWV, Or NONE
Finds x-intercepts if equation is in standard form $y=a x^{2}+b x+c$
Using the discriminant, determine how many solutions exist.

$$
\begin{aligned}
& \text { 1. } x^{2}-4 x+3=0 \\
& \text { 12. } x^{2}=-2 x-1 \\
& \text { 13. } x^{2}+2=2 x \\
& -2 x-2 x \\
& a=1 \quad b=-4 \quad c=3 \\
& x^{2}+2 x+1=0 \\
& 1 x^{2}-2 x+2=0 \\
& b^{2}-4 a c \\
& \left.\right|_{a=1} \quad b=2 \quad c=1 \\
& a=1 \quad b=-2 \quad c=2 \\
& (-4)^{2}-4(1)(3) \\
& (2)^{2}-4(1)(1) \\
& (-2)^{2}-4(1)(2) \\
& 4 \\
& \xrightarrow[|c| c \mid]{\substack{\text { ONE } \\
\text { SOlUTION }}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2 x^{2}=7 x-3 \\
& 2 x^{2}-7 x+3=0 \\
& a=2 \quad b=-7 \quad \quad \quad=3 \\
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(2)(3)}}{2(2)^{\prime}} \\
& =\frac{7 \pm \sqrt{25}}{4}=\frac{7 \pm 5^{\text {Th }}}{}
\end{aligned}
$$

5.

$$
\begin{aligned}
& x^{2}-7-4 x=0 \\
& x^{2}-4 x-7=0
\end{aligned}
$$

$$
1 a=1 \quad b=-4 \quad c=-7
$$

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-7)}}{2(1)}
$$

$$
x=\frac{4 \pm \sqrt{44}}{2} \longleftarrow \begin{gathered}
\text { not } \\
\text { perfect } \\
\text { square... }
\end{gathered}
$$

square...
leaves

$$
\{6,1\} \quad 1 \quad\{5.32,-1.32\}
$$

Square root or approximate as a decimal

CAN USE CALCULATOR
Fraction \rightarrow ALPHA $1=$ ENTER

The roots, zeroes, or x-intercepts are also called the SOlUtions.... of the equation.

1. Find the zeroes of the graph below.
2. Sketch the graph of $-x^{2}+4 x=4$ (x-intercepts)
$\{-3,0\}$
What are the $x \& y$ intercepts)? \cup se calculi

3. Complete the table that includes the solutions) of the quadratic equation.
.. $\quad x^{2}-6 x=0$
End GRAPH
Look for $y=0$

x	-1	0	1	2	5	6
y	7	0	-5	-8	-5	0

Quadratics can have ONE, TWN or $N 10 \ldots$ solutions.
Solve the following equations using your calculator.
4
4. $f(x)=5 x^{2}+29 x+20\{-0.8,-5\}$
h^{5}
5. $-x^{2}-5=-4 x$ No solution
6. $x^{2}=-4 \quad\{-2,2\}$

anuatur stans

1. Solve for y or for zero. Enter that equation into $y=$
2. Plug in $y_{2}=0$
3. Graph
4. Press and TRACE 5: Intersect 5. Find BOTH intersections or look for $y=0$ in
table
