EQ:

14.7 Quotient Rule
 EQ:

$$\frac{dy}{dx} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

 1. $f(x) = \frac{x^2 - 1}{2x - 1}$
 2. $f(x) = \frac{3}{x^4}$

 3. $f(x) = \frac{4x^2}{x^{\frac{3}{2}}}$

Derivatives & Constants
$$\frac{dy}{dx}cf(x) = c \cdot \frac{dy}{dx}f(x)$$

$$4. \quad f(x) = \frac{3\sqrt{x} - 2x}{5}$$

$$5. f(x) = \frac{x^2 \cos x}{3 \sin x}$$

14.6 PRODUCT RULE/ 14.7 QUOTIENT RULE

STATAVATOTO HINN

$$f(x) = x^n \qquad f'(x) = nx^{n-1}$$

ex. Find f'(x) for the following functions 1. $f(x) = 4x^2$

 $3. \quad f(x) = 2\sqrt{x}$

2.
$$f(x) = 3x^3 - 2x^2 + 7x$$

4. $f(x) = \frac{3}{x^2}$

5.
$$\lim_{h \to 0} \frac{2(x+4)^4 - 2x^4}{h}$$
 6.
$$\lim_{h \to 0} \frac{(2+h)^4 - 2^4}{h}$$

14.4 THE POWER RULE

$$\mathbf{I} - \mathbf{I}(\mathbf{X}) = \mathbf{I} \mathbf{X} \mathbf{I} \mathbf{I} \mathbf{I}$$

:Q∃

Find the slope of the tangent line when x = 2

X = x nedw so if the tangent line when x = 2

(5) how (x) how find f'(x) and f'(3) ex. $f(x) = \delta x^2$

EQ:

tangent line

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Notations:

2. Find all vertical tangents for $f(x) = \sqrt{x+2}$

3. Does the curve have a tangent at x = 2?

$$f(x) = \begin{cases} x^2 - 2x & x \le 2\\ 3x - 4 & x > 2 \end{cases}$$

14.5 EQUATIONS OF TANGENT LINES

:Q3 14.6 Product Rule

$$(\forall + xz - z^{x}L)(\xi + x - z^{x}) = (x)f \quad z \quad (z + z^{x})(z - x\xi) = (x)f \quad z$$

$$(x)S(x), f + (x), S(x)f = (x)S(x)f \frac{xp}{p}$$

$$x \text{ uis} - = x \cos \frac{xp}{\sqrt{p}} \quad x \text{ sos} = x \text{ uis} \frac{xp}{\sqrt{p}}$$

$$x \operatorname{soo} t = (x) f$$
 .4 $A = (x) f$.5 $x \operatorname{soo} x t = (x) f$.5

$$x \operatorname{up} = (x)_{f} \operatorname{j} (x)_{AI}_{f} \operatorname{pac} (x)_{II}_{f} (x)_{I}_{f} (x)_{I}_{f} \operatorname{pap} (x)_{I} \operatorname{pap} (x)_{I}_{f} \operatorname{pap} (x)_{I} \operatorname{pap}$$

$$x \operatorname{uis} = (x) f$$
 if $(x)^{4I} f$ bub $(x)^{m} f'(x)^{n} f'(x)^{n} f$ buil. B

$$x \text{ urs} = (x) f \text{ II} (x) \dots f \text{ pup } '(x) \dots f '(x) \dots f '(x) \dots f \text{ pull 'S}$$

2. Estimate the velocity at t = 3.5

3. Find the velocity at t = 1

$$[d \downarrow x \downarrow x] = (x)^{2} + x^{2} + x^{2$$

Ex. Find the average velocity for
$$f(x) = x^2 - 3x + 6$$
 on $[x, x+h]$

IHI SECVAL/INAGEAT LINES