EQ:

14.7 Quotient Rule EQ:

$$
\frac{d y}{d x} \frac{f(x)}{g(x)}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

1. $f(x)=\frac{x^{2}-1}{2 x-1}$
2. $f(x)=\frac{3}{x^{4}}$
3. $f(x)=\frac{4 x^{2}}{x^{3 / 2}}$

Derivatives \& Constants $\quad \frac{d y}{d x} c f(x)=c \cdot \frac{d y}{d x} f(x)$
4. $f(x)=\frac{3 \sqrt{x}-2 x}{5}$
5. $f(x)=\frac{x^{2} \cos x}{3 \sin x}$

HILINn

$$
f(x)=x^{n} \quad f^{\prime}(x)=n x^{n-1}
$$

ex. Find $f^{\prime}(x)$ for the following functions

1. $f(x)=4 x^{2}$
2. $f(x)=2 \sqrt{x}$
3. $f(x)=3 x^{3}-2 x^{2}+7 x$
4. $f(x)=\frac{3}{x^{2}}$
5. $\lim _{h \rightarrow 0} \frac{2(x+4)^{4}-2 x^{4}}{h}$
6. $\lim _{h \rightarrow 0} \frac{(2+h)^{4}-2^{4}}{h}$
$(\varepsilon) \nmid$ pue $(\mathrm{x}) \not \downarrow$ puly ${ }_{\tau} x \varsigma=(x) f \quad$ 'xə

$$
(\mathrm{I}-x) x \mathcal{E}=(x) f \cdot \mathrm{I}
$$

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Notations:
2. Find all vertical tangents for $f(x)=\sqrt{x+2}$
3. Does the curve have a tangent at $x=2$?

$$
f(x)= \begin{cases}x^{2}-2 x & x \leq 2 \\ 3 x-4 & x>2\end{cases}
$$

$9 Z$	IZ	9I	ZI	L	$(7) \ddagger$
S	\downarrow	ε	乙	I	7

'хә

$$
x \operatorname{sos} t=(x) f \cdot \downarrow
$$

$x \operatorname{sos} x_{t}=(x) f^{\prime} \varepsilon$

$$
\left(\downarrow+x z-{ }_{\tau} x L\right)\left(\varepsilon+x-{ }_{\tau} x\right)=(x) f \quad \tau \quad\left(\tau+{ }_{\tau} x\right)(\tau-x \varepsilon)=(x) f \cdot \tau
$$

$$
(x) \mathcal{B}(x)_{\mathrm{\imath}} f+(x)_{\mathrm{t}} \mathcal{\delta}(x) f=(x) \mathcal{\delta}(x) f \frac{x p}{p}
$$

$$
x \mathrm{UIS}-=x \operatorname{soo} \frac{x p}{\kappa p}
$$

$$
x \mathrm{SOO}=x \mathrm{u} \frac{x \mathrm{~s}}{\mathrm{fp}}
$$

