13.7 The Intermediate value Theorem EQ:

Intermediate Value Theorem
If f is continuous on $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=k$

Ex. Use the intermediate value theorem to show $f(x)=x^{4}-3 x^{2}+x-1$ has a zero on $[1,2]$

Ex. Use the intermediate value theorem to find the value of c guaranteed by the theorem.
$f(x)=\frac{2 x^{2}+x}{3 x-1} \quad\left[\frac{3}{2}, 3\right] \quad f(c)=2$

Unit I3

COICUIUS

part I
LimitS

13.) LimitS

EQ:

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} \frac{1}{x} & \lim _{x \rightarrow-\infty} \frac{1}{x} \\
\lim _{x \rightarrow 1} \frac{1}{x} & \lim _{x \rightarrow 0} \frac{1}{x}
\end{array}
$$

Definition of a Limit

If $f(x)$ becomes arbitrarily close to a single number L as it approaches c from either side, then the limit of $f(x)$ as x approaches c is L .

$$
\lim _{x \rightarrow c} f(x)=L
$$

Ex. $\lim _{x \rightarrow 1} x^{2}+3$
Ex. $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}-x-2}$

13.6 special Trig Limits

EQ:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \lim _{x \rightarrow 0} \frac{x}{\sin x}=1 \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0 \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$

Ex. $\lim _{y \rightarrow 0} \frac{\sin 4 y}{4 y}$

Limits Properties

- $\quad \lim _{x \rightarrow c} 4 f(x)$
ex. $\lim _{x \rightarrow 3} 7 x$
- $\quad \lim _{x \rightarrow c} f(x) g(x)$
ex. $\lim _{x \rightarrow 9} x \sqrt{x}$
Ex. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
Ex. $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$

Ex. $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{\sin ^{2} 7 x}$
Ex. $\lim _{h \rightarrow 0} \frac{\sin 4 h}{h^{3}}$

Ex. $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x \sin 2 x}$
13.5 Infinite Limits and Limits at Infinity

EQ:

LimitS at Infinity

1. $\lim _{x \rightarrow \infty} \frac{x}{2 x-1}=$
2. $\lim _{x \rightarrow-\infty} \frac{x}{2 x-1}=$
3. $\lim _{x \rightarrow-\infty} \frac{5 x^{2}+2}{x-2 x^{2}}=$
$\lim _{x \rightarrow \infty}$
$\lim _{x \rightarrow-\infty}$

4. $\lim _{x \rightarrow \infty} \frac{4 x}{(x-1)(x+2)}=$
5. Find the horizontal asymptote of $\frac{7 x}{\sqrt{x^{2}+4}}$

Infinite LimitS

6. $\lim _{x \rightarrow 0^{+}} \frac{1}{x} \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x}$
7. $\lim _{x \rightarrow 2} \frac{-3}{x-2}$
8. $\lim _{x \rightarrow 5} \frac{-4}{(x-5)^{2}}$

13.2 Limits day 2

EQ:
Ex. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
Ex. $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$

Ex. $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}$
Ex. $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$

Ex. $f(x)=\left\{\begin{array}{cc}2 x-2 & x \neq 1 \\ 8 & x=1\end{array}\right.$

$$
\begin{align*}
& \lim _{x \rightarrow 0} f(x)= \tag{1}\\
& \lim _{x \rightarrow 1} f(x)=
\end{align*}
$$

Ex. $f(x)=\left\{\begin{array}{cc}2 & x<-2 \\ 2 x+4 & -2 \leq x \leq 1 \\ 6 x & x>1\end{array} \quad \lim _{x \rightarrow-2} f(x)=\right.$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)= \\
& \lim _{x \rightarrow 1} f(x)=
\end{aligned}
$$

13.3 continulity

EQ:

A function is continuous if...

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Ex. Is $f(x)=x^{3}+1$ continuous at $\mathrm{x}=2$?

Ex. Is $f(x)= \begin{cases}x-2 & x>3 \\ -2 x+2 & x \leq 3\end{cases}$ continuous at $\mathrm{x}=3$?

Ex. Is $f(x)=\frac{x^{2}-x-6}{x^{2}-2 x-3}$
continuous at $\mathrm{x}=3$?

13.4 One-Sided LimitS

EQ:
$\lim _{x \rightarrow 0} \frac{|x|}{x}$
$\lim _{x \rightarrow 5} \frac{|x-5|}{x-5}$

$$
\lim _{x \rightarrow 4} \frac{|x-5|}{x-5}
$$

$\lim _{x \rightarrow 0}=$

$$
\begin{array}{lll}
\lim _{x \rightarrow-1}= & \lim _{x \rightarrow-1^{+}}= & \lim _{x \rightarrow-1^{-}}= \\
\lim _{x \rightarrow-4^{+}}= & \lim _{x \rightarrow-4^{-}}= & \lim _{x \rightarrow-4}= \\
\lim _{x \rightarrow 1^{+}}= & \lim _{x \rightarrow l^{-}}= & \lim _{x \rightarrow 1}= \\
f(1)= & f(-1)= &
\end{array}
$$

$$
\text { Ex. } f(x)= \begin{cases}7 & x<-1 \\ -x+6 & -1 \leq x \leq 3 \\ 2 x & x>3\end{cases}
$$

$\lim _{x \rightarrow-1^{+}}=$	$\lim _{x \rightarrow 3^{-}}=$
$\lim _{x \rightarrow-1^{-}}=$	$\lim _{x \rightarrow 3^{+}}=$
$\lim _{x \rightarrow-1}=$	$\lim _{x \rightarrow 3}=$
	$f(3)=$

