Practice – Integer Exponents

Name ______ Period _____

Simplify the expressions below.

$$1. \ 4^{-2}$$

3.
$$\frac{1}{2^0}$$

4.
$$\left(\frac{1}{4}\right)^2$$

6.
$$\frac{4}{2^{-3}}$$

Simplified expressions are shown below. Fill in the box with the value that makes each equation true.

$$7. \quad 4n^{\square} = \frac{4}{n^2}$$

$$8. \frac{a}{3b} = \frac{ab^3}{3}$$

In the lab, the population of a certain bacteria doubles every month. A study uses the expression $3000 \cdot 2^m$ to model a population of 3000 bacteria after m months of growth.

- 9. What is the population of bacteria at the beginning of the study when m=0?
- 10. What is the population of bacteria at m=-2? What does this value represent?

Evaluate each expression for x=-3 and y=5.

11.
$$3y^{-2}$$

12.
$$(4x)^{-2}$$

13.
$$\frac{1}{x^{-3}y^2}$$

14.
$$x^0 y^{-3}$$

Simplify each expression.

15.
$$a^{-5}b^{-7}$$

16.
$$a^1c^0$$

17.
$$\frac{7ab^{-2}}{3w}$$

18.
$$\frac{15s}{5t^{-3}}$$