12. 8 Parametric Applications

EQ:

1. A cannon shoots from the ground at an angle of 37° with an initial velocity of $300 \mathrm{ft} / \mathrm{sec}$.

Write a set of parametric equations to model the situation.

When is the cannonball 500 feet away?

What if the cannon is 4 feet above the ground?

What if there is a wind of $10 \mathrm{ft} / \mathrm{sec}$ behind (with) the cannonball?

There is a wall 2500 feet away with a height of 120 feet. Does the cannonball clear the wall?

Unit 12

Polar, Parametric, \& Vectors

$r=a \sin \theta$
$r=a \cos \theta$
(a)

(a)
(a)

$r=a \pm b \cos \theta$
$r=a \pm b \sin \theta$
$a>0, b>0, a / b=1$
(b)

Rose Curve (n even)

(b)

$r=a \pm b \cos \theta$

$$
r=a \pm b \sin \theta
$$

$$
a>0, b>0,1<a / b<2
$$

(c)

Rose Curve (n odd)

(c)

$$
\begin{gathered}
r=a \pm b \cos \theta \\
r=a \pm b \sin \theta \\
a>0, b>0, a<b
\end{gathered}
$$

(d)

Archimedes' Spiral

(d)

I2.I Polar Basics

EQ:
Rectangular Coordinates:
$P\left(4, \frac{5 \pi}{3}\right) \quad Q\left(3, \frac{7 \pi}{6}\right)$

Polar Coordinates:
$R\left(-2, \frac{5 \pi}{4}\right) \quad S\left(1,-\frac{\pi}{3}\right)$

CONVERSIONS

$x^{2}+y^{2}=$

POLAR TO RECTANGULAR:

RECTANGULAR TO POLAR:

The Spider and The Fly

The spider is $1 T$

$$
\begin{aligned}
& x_{1 T}=-2 T \\
& y_{1 T}=5-2 T
\end{aligned}
$$

The fly is $2 T$

$$
\begin{aligned}
x_{2 T} & =1-T \\
y_{2 T} & =1+T
\end{aligned}
$$

- Change your calculator's mode to RADIANS, PARAMETRIC, and SIMULTANEOUS. This will graph your 2 equations at the same time.
- Change the WINDOW to $[-5,5]$ by $[-5,8]$ with $0 \leq T \leq 5$ and Tstep $=.05$
- Explore the path of the spider and the fly by using the trace button with the up and down arrow keys.

Does the spider catch the fly? Why or why not?

12.7 Parametric Equations in the calculator

Let $f(x)=2 x-1$

$$
\begin{aligned}
& x_{T}=T \\
& y_{T}=2 T-1
\end{aligned}
$$

1. Change your calculator's mode to PARAMETRIC.
2. Type in the above parametric equation into $x_{1 T}$ and $y_{1 T}$.
3. Change the window to following:

$$
\begin{aligned}
& \text { Tmin }=0 \\
& \text { Tmax }=4 \\
& \text { Tstep }=0.1 \\
& X \min =-5 \\
& X \max =5 \\
& X s c l=1 \\
& Y \min =-5 \\
& Y \max =5 \\
& Y s c l=1
\end{aligned}
$$

8. Now graph the parametric function $\begin{aligned} & x_{T}=\cos T \text {. Predict what will happen when you change your values of } \\ & y_{T}=\sin T\end{aligned}$. Tmin, Tmax, and Tstep.
9. Summarize what happens when you change the values of Tmin, Tmax, and Tstep when graphing parametric equations in your calculator.

Ex 2. Convert $\left(4, \frac{5 \pi}{6}\right)$ to rectangular coordinates.

Ex 3. Convert to polar coordinates.
a. $(\sqrt{3},-1)$
b. $(0,-2)$
c. $(-3,3)$

Ex 4. Convert the following equations to polar form.
a. $x=3$
b. $x^{2}+y^{2}=16$

Ex 5. Convert the following equation to rectangular form and sketch the graph.
a. $r \cos \theta=3$
b. $\theta=\frac{\pi}{3}$. EQ:

12. 6 Parametric Basics

EQ:
Parametric Equation: The coordinates of points are a function of a parameter, called t .
$x=3 t+1$
$y=t-2$
$-1 \leq t \leq 1$
a. Graph the parametric equation.
b. Eliminate the parameter

Graph the following equations, with the direction shown, and eliminate the parameter.

1. $\begin{aligned} & x=\cos t \\ & y=\sin t\end{aligned}$
$x=4 \cos t$
2. $y=\sin t$
3. $\begin{aligned} & x=4 \cos t \\ & y=4 \sin t\end{aligned}$
$x=\cos t$
$y=4 \sin t$
4. $\begin{aligned} & y=4 \sin t\end{aligned}$

12. 5 Vectors Day 2

EQ:
The Dot Product

$$
u \bullet v=a_{1} a_{2}+b_{1} b_{2}
$$

Ex. Find the dot product of $u=2 i+j$ and $v=5 i-6 j$
*Two vectors are orthogonal (\qquad) if \qquad .

Angle between two vectors

$$
u \bullet v=\|u\|\|v\| \cos \theta
$$

So to find an angle...

Ex. Find the angle between $u=4 i-3 j$ and $v=2 i+5 j$

12. 3 Graphing Polar Equations

EQ:
Tell what type of graph it is, make a table, and sketch a graph.

1. $r=-4 \cos \theta$

2. $r=2+4 \sin \theta$

3. $r=\sin 2 \theta$

4. $r=5 \cos 3 \theta$

12.4 Vectors Day I EQ:

SCALAR

- a line segment
- examples:

VS.

VECTOR

- a directed line segment
- has a magnitude and direction - examples:

Unit Vector: a vector with a magnitude of one
Zero Vector: a vector with no direction and a magnitude of zero Position Vector: has an initial point at the origin

Ex. Find the position vector of a vector starting at $(-2,5)$ and terminating at $(3,7)$

Magnitude: the \qquad of a vector

$$
\|v\|=\sqrt{a^{2}+b^{2}}
$$

ex.
ex. $u=2 i-3 j$

Vector Operations Part 1

Ex. $u=\langle 2,-1>$ and $v=<4,2>$ Find $2 v+3 u$ and $v-u$.
Algebraically:

Horizontal and Vertical Components $\quad \cos \theta=\frac{a}{\|v\|} \quad$ OR $a=\|v\| \cos \theta$

Ex. A vector has a magnitude of 8 and direction $\frac{\pi}{3}$.
Find the horizontal \& vertical components in $\mathrm{i}+\mathrm{j}$ form

Ex. Find the magnitude and direction of $u=-\sqrt{3} i+j$

