Warm-Up Tuesday

...in your notes

Quadratic Function: a function whose equation can be written:

 $f(x) = ax^2 + bx + c$, where a,b,c are real numbers and $a \ne 0$.

The graph of a quadratic function is a parabola.

In general we can say that for the graph of $v = ax^2$:

- If 0 < |a| < 1, the graph will be _____ and if |a| > 1, the graph will be _____
- Also, if a < 0, the graph will be <u>reflects over x = 3xis</u></u>

Example 1 List the equations in order from widest to narrowest ignore negatives $y = x^2$, $y = 2x^2$, $y = \frac{1}{2}x^2$, $y = -4x^2$ smallest to largest

$$y = x^2$$
, $y = 2x^2$, $y = \frac{1}{2}x^2$, $y = -4x^2$

How do I find the transformations of a quadratic or absolute value function?

The standard form of a quadratic function is

$$f(x) = a(x-h)^2 + k$$

The point (h, k) is the **Vertex** of the parabola. If the graph opens upwards, the vertex will be a <u>minimum</u>. If the graph opens downwards the vertex will be a <u>maximum</u>.

Example 2

List the transformations of $f(x) = \frac{1}{2}(x-3)^2 + 7$ from the parent function.

Ly wider by a scale factor of

EQ

How do I find the transformations of a quadratic or absolute value function?

Absolute Value a function whose equation can be written in the form f(x) = a|x-h| + k

Example 3: Draw the absolute value parent function. Then, list the transformations, sketch the graph of the new function, and label its vertex.

Absolute Value Parent Function

$$g(x) = |x-2| + 3$$

7

4 Quaratic and Abs. Value Transfo

Name:____

Describe in words how the parent graph, $f(x) = x^2$, is transformed into g(x).

1.
$$g(x) = 2.8(x+16)^2 + 10$$

2.
$$g(x) = -\frac{3}{10}(x-11)^2 + 6$$

Describe in words how the parent graph, f(x) = |x|, is transformed into g(x).

3.
$$g(x) = 7|x+2|-5$$

4.
$$g(x) = -\frac{1}{8}|x-3|+4$$

5.
$$g(x) = -|x+6| + 7$$

#6-8 Sketch the graph of the function. Label each vertex.

6.
$$f(x) = \frac{1}{5}(x+2)^2 - 4$$

7.
$$g(x) = 3(x+1)^2 - 2$$

8.
$$h(x) = -|x+2|+1$$

- 9. Based on the description, write the equation in the form of $y = a \cdot f(x c) + d$ for the parent graph, f(x) = |x|.
- a.) The graph is reflected over the x-axis, widened by a factor of $\frac{1}{2}$, and translated 3 units to the right.
 - b.) The graph is narrowed by a factor of 3, translated 4 units to the left, and 8 units down.
- 10. Record the letters in order from narrowest graph to the widest.

$$A. \ y = -2f(x)$$

B.
$$y = \frac{1}{2} f(x)$$

$$C. \ y = 5f(x)$$

A.
$$y = -2f(x)$$
 B. $y = \frac{1}{2}f(x)$ C. $y = 5f(x)$ D. $y = \frac{8}{3}f(x)$ E. $y = -\frac{1}{3}f(x)$

Describe <u>in words</u> how the parent graph, $f(x) = x^2$, is transformed into g(x).

11.
$$g(x) = \frac{1}{5}(x-1)^2 + 3$$

12.
$$g(x) = -7(x-11)^2 + 2$$

Describe <u>in words</u> how the parent graph, f(x) = |x|, is transformed into g(x).

13.
$$g(x) = \frac{1}{2}|x+4|-9$$

14.
$$g(x) = -5|x-3|+4$$

15.
$$g(x) = 2|x| - 7$$

EQ:

How do I find the transformations of a quadratic or absolute value function?

CLOSING

on google classroom