

Algebra I - Unit 9: Topic 3 - Solving Quadratics by Graphing

Practice - Solving Quadratics by Graphing		pp 622-624
Name	Date	Period

 $Complete \ the \ table \ i\underline{ncluding} \ the \ solution \textbf{(s)} \ \underline{of} \ the \ quadratic. \ Then \ graph \ the \ quadratic \ equation.$

1.
$$x^2 + 7x + 10 = 0$$

		,		
		,		
		4		
		9		
		1 4 1 1		
		3		
		121		
		++++	-	
4 4 9 .	<u> </u>	1 1 1	1111	+ + + + 3
		-4	$\overline{}$	++-
		-3-		
		-9		
	\longrightarrow		\cdots	\longrightarrow
		-5		
		-6		
		-,-	$\overline{}$	
				1 1 1 1

Х

y

3. A baseball coach uses a pitching machine to simulate pop flies during practice. The baseball is shot out of the pitching machine with a velocity of 80 feet per second. The quadratic function $y = -16x^2 + 80x + 4$, shown below, models the height of the baseball after x seconds.

- A. Approximately, how long does the baseball stay in the air?
- B. What is the maximum height that the baseball reaches?

Algebra I – Unit 9: Topic 3 – Solving Quadratics by Graphing

Complete the information requested for each quadratic equation.

4.
$$x^2 + 5x = 6$$

5.
$$x^2 - 18 = 7x$$

6.
$$5x^2 + 25x = 0$$

Solution(s):

Max Min:

7.
$$-x^2 - 10x = 25$$

8.
$$x^2 + 3 = 0$$

9.
$$9x = -x^2 - 18$$

Max/Min:

Root(s): _	
------------	--

x-intercepts(s):

10. Part of the graph of a quadratic equation is shown below. If the line of symmetry for this quadratic equation is x = -1.25, between which two integers will the other part of the graph intersect the *x*-axis?

11. If a goalie kicks a soccer ball with an upward velocity of 65 feet per second and his foot meets the ball 3 feet off the ground, the function $y = -16t^2 + 65t + 3$ represents the height of the ball y in feet after t seconds. Graph the function on the grid below.

12. Approximately how long is the ball in the air?

