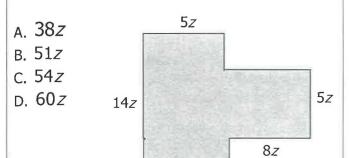
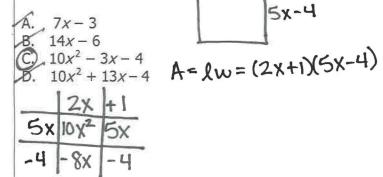
Complete the six re-test problems in the right column. Use the problems in the left column and the steps to solve to guide you. Try solving the basic problems first then the re-test problems.

| Example Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Steps to Solve                                                                                                                                                                                                                                                | Problem for You to Complete                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For all real numbers $a$ and $b$ , which of the following statements is always true?  Let $a=3$ . Let $b=5$ .  A. $(3a)^4 = 12a^4 (3(3))^4 = 65b1 12(3)^4 = 65$ | <ol> <li>Pick a number to plug into your variables.</li> <li>Check each equation with your calculator using the numbers you picked in step 1.</li> <li>Choose the answer choice that makes a TRUE statement</li> </ol>                                        | For all real numbers $a$ and $b$ , which of the following statements is always true?  A. $(4s)^3 = 12s^3$ B. $(s^2t^4)^3 = s^6t^{12}$ C. $(s^3)(s^4) = s^{(3)(4)}$ D. $(s^3)(3t^3) = (3st)^3$ |
| Simplify: $(m+5)^2 = (m+5)(m+5)$<br>$A \cdot m^2 + 25$<br>$B \cdot m^2 + 10m + 25$<br>$A \cdot m^2 + 25$<br>$A \cdot m^2 + 25$<br>$A \cdot m^2 + 25$<br>$A \cdot m^2 + 10m + 25$<br>$A \cdot m^2 + 10m + 25$<br>$A \cdot m^2 + 10m + 25$<br>$A \cdot m^2 + 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>Write out what it means to         "be squared" (i.e. 4² = 4•4         and 7² = 7•7).</li> <li>Make a multiplication chart to         find the product.</li> <li>Write your answer as an         expression.</li> <li>Combine like terms.</li> </ol> | Simplify: $(y-3)^2$ A. $2y+9$ B. $y^2-6$ C. $y^2+9$ D. $y^2-6y+9$                                                                                                                             |


Find the perimeter of the shaded region below.



Perimeter=5x+3x+2x+4x+3x+7x=24x


- 1. Recall the meaning of perimeter (add all sides).
- 2. Identify the length of each side.
- 3. Use the provided lengths to find any missing lengths.
- 4. Add all sides.
- 5. Combine like terms.

Find the perimeter of the shaded region below.



6*z* 

A rectangle has a length of 2x + 1 and a width of 5x - 4. Which expression best describes the area of the rectangle?



$$A = 10x^2 + 5x - 8x - 4$$
  
 $A = 10x^2 - 3x - 4$ 

- 1. Draw a picture and label with the information from the problem.
- 2. Recall the formula for the area of a rectangle (A = lw).
- 3. Identify the length and the width. Plug these into the formula.
- 4. Make a multiplication chart to find the product.
- 5. Write your answer as an expression.
- 6. Combine like terms.

A rectangle has a length of 4x + 6 and a width of 3x - 1. Which expression best describes the area of the rectangle?

A. 
$$7x + 5$$

B. 
$$14x + 10$$

C. 
$$12x^2 + 22x - 6$$

D. 
$$12x^2 + 14x - 6$$

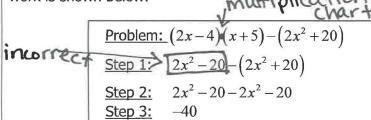
The length of a rectangular garden is 20 feet longer than the width, w. Which equation best describes the garden's perimeter, P?

A. 
$$P = (w + 20) + w$$
  
B.  $P = (w + 20)w$   
C.  $P = (w + 20)2w$   
D.  $P = 2(w + 20) + 2w$ 

$$P=21+2w$$
  
 $P=2(w+20)+2w$ 

- Draw a picture and label with the information from the problem.
- 2. Recall the formula for the perimeter of a rectangle (P = 2l + 2w).
- 3. Notice none of the answer choices have the variable l, so identify what you can use to substitute for l.
- 4. Substitute for l.

The width of a rectangular garden is 7 feet shorter than the length, l. Which equation best describes the garden's perimeter, P?


A. 
$$P = l + (l - 7)$$

B. 
$$P = 2l + 2(l - 7)$$

C. 
$$P = 2l(l-7)$$

D. 
$$P = l(l-7)$$

Amanda was told to simplify the following polynomial expression completely:  $(2x-4)(x+5)-(2x^2+20)$ . Her work is shown below.



Where did the first mistake occur?

A Step 1
B. Step 2
Step 3

No mistake was made

2x -4

1x 2x^2 -4x

+5 10x -20

$$2x^{2} - 4x + 10x^{-20}$$

$$2x^{2} + 6x - 20$$

1. Identify the first operation to complete the provided problem.

2. Try it yourself!

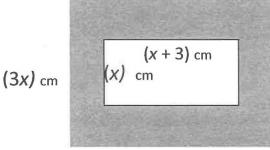
- 3. Compare your first step with the first step in the problem.
- 4. If they match, identify the second operation to complete. Try it yourself!
- Compare your second step with the second step in the problem.
- 6. If they match, continue this process. If they do not match, you have found the mistake!

Amanda was told to simplify the following polynomial expression completely:  $(x+3)(3x-2)-(3x^2-5)$ . Her work is shown below.

Problem: 
$$(x+3)(3x-2)-(3x^2-5)$$
  
Step 1:  $3x^2+7x-2-(3x^2-5)$   
Step 2:  $3x^2+7x-2-3x^2-5$   
Step 3:  $7x-7$ 

Where did the first mistake occur?

- A. Step 1
- B. Step 2
- C. Step 3
- D. No mistake was made


Find the area, in simplest terms, of the shaded region.

A. 
$$5x^2 - 12x$$

8.  $5x^2 - 6x$ 

9.  $6x^2 - 6x$ 

D.  $6x^2 - 12x$ 



Large Area = 
$$lw = (3x)(2x-3)$$
  
 $\frac{3x}{2x bx^2} = bx^2 - 9x$   
 $\frac{3x}{-3 - 9x}$ 

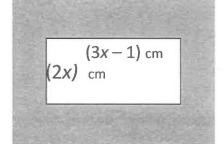
Small frea= 
$$lw = (x)(x+3)$$
  
 $\frac{||x||}{|x||_{1x^2}} = |x^2+3x|$ 

Shaded Area = 
$$1(6x^2-9x)-(1x^2+3x)$$
  
 $6x^2-9x-1x^2-3x$ 

- 1. Find the area of the larger rectangle.
  - a. Recall the formula for the area of a rectangle ( A = lw ).
  - b. Identify the length and the width. Plug these into the formula.
  - c. Make a multiplication chart to find the product.
  - d. Write your answer as an expression.
  - e. Combine like terms.
- 2. Find the area of the small rectangle.
  - a. Recall the formula for the area of a rectangle ( A = lw).
  - b. Identify the length and the width. Plug these into the formula.
  - c. Make a multiplication chart to find the product.
  - d. Write your answer as an expression.
  - e. Combine like terms.
- 3. Shaded Area = (Large Area) (Small Area)

Find the area, in simplest terms, of the shaded region.

$$A$$
  $-2x^2$ 


B. 
$$-2x^2 + 4x$$

c. 
$$10x^2$$

D. 
$$10x^2 + 4x$$

$$(4x + 2)$$
 cm

(x) cm

